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It has recently become more widely appreciated that the pres-
ence of rotational diffusional anisotropy in proteins and other
macromolecules can have a significant affect on the interpretation
of NMR relaxation data in terms of molecular motion. In this
paper, we show how commonly used NMR relaxation data (R1, R2,
and NOE) obtained at two spectrometer frequencies can be ana-
lyzed using a Bayesian statistical approach to reliably detect and
quantify the degree of rotational diffusion anisotropy. Our ap-
proach differs from previous methods in that it does not make
assumptions concerning the internal motions experienced by the
residues which are used to quantify the diffusion anisotropy, but
rather averages the results over all internal motions consistent
with the data. We demonstrate our method using synthetic data
corresponding to isotropic, axially symmetric anisotropic, and
fully asymmetric anisotropic rotational diffusion, as well as exper-
imental NMR data. We compare the Bayesian statistical approach
with a widely used method for extracting tumbling parameters
using both synthetic and experimental data. While it can be dif-
ficult to separate the effects of chemical exchange from rotational
anisotropy using this “standard” method, these effects are readily
separated using Bayesian statistics. In addition, we find that the
Bayesian statistical approach requires considerably less CPU time
than an equivalent standard analysis. © 2000 Academic Press

Key Words: backbone dynamics; Lipari–Szabo formalism; rota-
tional correlation time; Monte Carlo; multiple fields; chemical
exchange.

INTRODUCTION

It is well known that NMR is a powerful tool for the stu
of internal motions in macromolecules (1, 2). However, inter

retation of such data in terms of internal motions is contin
pon the accurate description of the overall tumbling of
olecule in solution (3, 4). It has recently become more wide
ppreciated that the neglect of rotational diffusional anisot
an result in potentially serious misinterpretation of the N
elaxation data in terms of molecular motion (3, 5). For exam
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le, given a protein whose shape can be well approximate
prolate ellipsoid, bond vectors parallel to the long axis

isplay significantly faster transverse relaxation rates (R2) than
those perpendicular to the long axis. If one incorrectly assu
that a protein is spherical, then the estimate of the ov
correlation time could be dominated by a relatively la
number of bond vectors oriented perpendicular to the sym
try axis, and one might erroneously attribute a contributio
R2 from chemical exchange (Rex) for those oriented along th
symmetry axis (3, 6).

Methods which estimate the overall tumbling parame
rom the ratio of the transverse and longitudinal relaxa
ates (R2/R1) must somehow eliminate from consideration

residues which in factdo have significant contributions fro
hemical exchange processes, as their inclusion would
ystematic error in the resulting parameter values. One
only used method for achieving this selection is to rem

esidues which satisfy the criterion

^T2& 2 T2,n

^T2&
2

^T1& 2 T1,n

^T1&
. 1.5 SD, [1]

whereT1,n and T2,n are the longitudinal and transverse re
ation time constants for residuen, the means are taken over
residues for which the steady-state heteronuclear NO
greater than 0.65, and SD represents the standard devia
the left-hand side of Eq. [1] over all residues (NOE. 0.65)
(7, 8). Clearly, this criterion makes assumptions about

istribution of internal motions in the protein (e.g., that m
esidues in the molecule do not haveRex contributions). Th

analysis is further complicated by the possible attributio
Rex contributions to residues which in fact are not underg
chemical exchange but have orientations very close to
major diffusion axis (6). Separation of anisotropy and chem
exchange effects using rotating frame relaxation dispe
(9–11), cross-correlated relaxation (12), or residual dipola
couplings (6) has been proposed; however, these met
require the implementation of additional experimental met
beyond the measurement ofR1, R2, and heteronuclear NO
Such methods can be experimentally challenging and ca
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67DETECTION AND QUANTIFICATION OF ROTATIONAL DIFFUSION ANISOTROPY
prone to additional systematic errors beyond those inhere
the traditional set of relaxation experiments. One could
detectRex contributions via their quadratic dependence on
spectrometer field strength, and several laboratories have
to make use of this information (8, 13, 14). Our approac
makes use of a general statistical formalism within which
possible to combine relaxation data obtained at multiple s
trometer fields (or other sources) and the effects of rotat
anisotropy and chemical exchange can be separated.

Rather than reducing the amount of data used in the es
tion of overall tumbling by neglecting residues which m
potentially havete or Rex contributions, it is possible to ma
use of all of the relaxation data, while at the same
avoiding unnecessary assumptions concerning the interna
tion experienced by any given residue. As we have desc
previously, such information can be usefully summarize
the form of a Bayesian marginal posterior probability den
function (4). In this paper, we show how these marginal d
ities for the apparent rotational correlation timetm,app

(i ) con-
tructed usingR1, R2, and NOE data collected at two sp-
rometer field strengths can be used to detect, quantify
ssess the statistical significance of rotational diffusion an
opy in macromolecules.

THEORY

We consider1H–15N internuclear vectors whose inter
motions can be described by the Lipari–Szabo “model-f
formalism (15), in which the spectral density is given by

J~v! 5
2

5 F S2tm

1 1 v 2t m
2 1

~1 2 S2!t

1 1 v 2t 2G , [2]

whereS2 is a measure of the spatial restriction of the inte
otion,te is a measure of the timescale of the internal mo

tm is the rotational correlation time for the overall isotro
tumbling, andt21 5 te

21 1 tm
21. In addition, we model th

effect of chemical exchange asRex 5 vN
2Fex, wherevN is the

Larmor frequency of15N andFex is a constant that depends
the chemical shift differences, populations, and interconve
rates for the exchanging species (2).

Consider a set of bond vectors embedded in an ellip
undergoing rotational diffusion withDxx # Dyy # Dzz, where
Dii is the diffusion coefficient for reorientation about thei th

xis of the principal axis system (PAS) of the molecule. N
hat in our convention,Dzz is the largest of the diffusio
oefficients, and is unrelated to any symmetry which ma
resent. If we fit the adjustable parameters of Eq. [2] to
elaxation data for each bond vector while allowingtm to vary
ndependently, then the resulting apparenttm valuestm,app

(i ) for
all residuesi are approximately determined by theDii ’s and the
orientation of thei th bond vector in the PAS (3, 7, 16). In order
o make use of this information for the analysis of dynam
ne must know the relative orientations of all of the b
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vectors for which there are relaxation data, which mus
obtained from a high-resolution NMR or X-ray crystal str
ture.

Two different approximate expressions fortm,app
(i ) in terms o

the diffusion coefficients and orientation have been propo
The first, proposed by Schurr, Babcock, and Fujimoto3)
(SBF), assumes that the ellipsoid is axially symmetric
Dzz 5 D i $ Dxx 5 Dyy 5 D' (prolate), orDzz 5 Dyy 5
D' $ Dxx 5 D i (oblate)). In this case, the bond vec
orientation for residuei is given by the angleu i of the bond
vector relative to theD i axis. The SBF approximation is th
given by

tm,app
~i ! 5

1
4 ~3 cos2u i 2 1! 2

6D'

1
3 cos2u isin2u i

5D' 1 D i
1

3
4 sin4u i

2D' 1 4D i
.

[3]

The latter, proposed by Bru¨schweiler, Liao, and Wright (16)
BLW), does not assume axial symmetry, but is valid only
small” anisotropies. It is given by

~6t m,app
~i ! ! 21 5 Qxxx i

2 1 Qyyy i
2 1 Qzzzi

2, [4]

wherexi , yi , andzi are the direction cosines of the internuc
vectori relative to the PAS andQii is the diffusion coefficien
for the motion of thei th axis of the PAS and is given byQxx 5
(Dyy 1 Dzz)/ 2, Qyy 5 (Dxx 1 Dzz)/ 2, andQzz 5 (Dxx 1

yy)/ 2 (17).
As we have described previously (4), given a set ofj ( j 5

1, . . . ,n) NMR relaxation measurementsRij for each of thei
i 5 1, . . . , N) residues one can construct the joint poste

probability density for the model parameters. In the follow
Rij will represent a given relaxation measurementj (e.g.,R1,

2, or NOE) for a given residuei , Ri will represent th
complete vector of relaxation measurements for residuei , and
R will represent the complete set of relaxation data for
residues. The local posterior probability density for residuei is
constructed by applying the Bayes theorem to the likelihoo
the data and the prior probability of the parameters (18),

P~S2, te, Rex, t m,app
~i ! uRi!

5
P~RiuS2, te, Rex, t m,app

~i ! ! P~S2, te, Rex, t m,app
~i ! !

P~Ri!
, [5]

where P(Ri) is a normalization constant. The likelihood
observing the dataRi given that the underlying dynamic pr-
cesses are described by the given values ofS2, t e, Rex, and
tm,app

(i ) is taken to be
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68 ANDREC ET AL.
P~RiuS2, te, Rex, t m,app
~i ! !

5 P
j51

n 1

Î2ps ij
2 expF2~Rij 2 Rij

~calc!! 2

2s ij
2 G , [6]

whereRij
(calc) is thej th relaxation parameter calculated using

given values ofS2, t e, Rex, andtm,app
(i ) , ands ij is the uncertaint

in the j th observed relaxation value for thei th residue. Th
rior probabilityP(S2, t e, Rex, tm,app

(i ) ) is taken to be equal to o
in the region 0, S2 , 1, t e $ 0, Rex $ 0, tm,app

(i ) . 0, and
zero outside of this region. We can summarize the informa
content regardingtm,app

(i ) in the dataRi by means of the margin
posterior probability density oftm,app

(i ) :

P~t m,app
~i ! uRi! 5 E P~S2, te, Rex, t m,app

~i ! uRi!dS2dtedRex. [7]

The marginal densityP(tm,app
(i ) uRi) can be thought of as th

knowledge that we have about the value oftm,app
(i ) averaged ove

all possible internal motions (values ofS2, t e, and Rex)
weighted by their consistency with the data. Although
integral in Eq. [7] cannot be solved in closed form, it
nonetheless quite straightforward to generate a Monte
sample of points distributed according toP(S2, t e, Rex,
tm,app

(i ) uRi), from which a numerical approximation to the fu-
tion P(tm,app

(i ) uRi) can be generated (see Appendix B) (4). It is
lear that at least four relaxation data must be included inRi for

the marginal densityP(tm,app
(i ) uRi) to be informative, since oth-

erwise the parameter estimation problem is underdeterm
Thus, the traditionalR1, R2, and NOE measurements at o
field strength must be supplemented with additional data, e
by repeating the measurements at a different field streng
by including cross-correlated relaxation data (4).

For the general case of fully asymmetric anisotropic t
bling, the diffusion tensor can be described by six parame
the three principle valuesDxx, Dyy, andDzz and the three Eule
angles f, u, and x describing the orientation of the PA
relative to an arbitrarily chosen molecular reference frame
the other hand, for axially symmetric tumbling, the diffus
tensor is usually described by the four parametersD i, D', f,
andu, whereD i andD' were defined in Eq. [3] above, andf
andu give the orientation of the symmetry axis in the mo
ular frame. In order to more easily compare results for ax
symmetric and fully anisotropic fits and to be able to m
easily constrain the BLW approximation to axial symmetr
is convenient to introduce the following parameters:D iso, Raxial,
andRasym. D iso is the magnitude of the isotropic portion of
diffusion tensor and is given by (Dxx 1 Dyy 1 Dzz)/3 or
(2D' 1 D i)/3. The parameterRaxial describes the degree
axially symmetric anisotropy; it has values less than 1
oblate ellipsoids and greater than 1 for prolate ellipsoids
axially symmetric tumbling,Raxial is simply equal toD i/D'.
For the BLW approximation, we define it to be
e

n
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Raxial 5 5
2Dzz

Dxx 1 Dyy
, Dzz/Dyy . Dyy/Dxx ~prolate-like!

2Dxx

Dyy 1 Dzz
, Dzz/Dyy , Dyy/Dxx ~oblate-like!

.

[8]

he parameterRasym describes the degree of deviation fr
axial symmetry, and is defined to be

Rasym5 5
Dxx

Dyy
, Dzz/Dyy . Dyy/Dxx ~prolate-like!

Dyy

Dzz
, Dzz/Dyy , Dyy/Dxx ~oblate-like!

. [9]

asym is obviously equal to 1 for axially symmetric tumblin
Given an orientation for each1H–15N internuclear vectori in

n arbitrarily chosen molecular frame (e.g., the coordi
ystem of a PDB file), we can use Eq. [3] or [4] to calculate
xpectedtm,app

(i ) value for that vector as a function of the
tensor parameters:tm,app

(i ) (D iso, Raxial, Rasym, f, u, x). It should be
emphasized that the anglesf, u, andx relate the orientation o
the PAS to the molecular frame, and do not represent ori
tions of individual bond vectorsi . We can then evaluate t
probability of a point in the tensor parameter space by ta
the product of the marginal probability densities over aN
residues evaluated at their respective expectedtm,app

(i ) values
nder the assumptions of isotropic, axially symmetric an

ropic, and fully asymmetric anisotropic tumbling, resp
ively, the posterior probabilities are given by

Piso~D isouR! 5 P
i51

N

P~t m,app
~i ! ~D iso, Raxial 5 1, Rasym5 1!uRi!

3 Piso~D iso!/Piso~R!, [10a]

Paxial~D iso, Raxial, f, u, xuR!

5 P
i51

N

P~t m,app
~i ! ~D iso, Raxial, Rasym5 1, f, u, x)uRi)

3 Paxial~D iso, Raxial, f, u, x!/Paxial~R!, [10b]

nd

Pasym~D iso, Raxial, Rasym, f, u, xuR!

5 P
i51

N

P~t m,app
~i ! ~D iso, Raxial, Rasym, f, u, x!uRi!

3 Pasym~D iso, Raxial, Rasym, f, u, x!/Pasym~R!, [10c]

here R represents the relaxation data for allN residues
iso(D iso), Paxial(D iso, Raxial, f, u, x), andPasym(D iso, Raxial, Rasym,
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69DETECTION AND QUANTIFICATION OF ROTATIONAL DIFFUSION ANISOTROPY
f, u, x) are the prior probabilities over the tensor parame
andP iso(R), Paxial(R), andPasym(R) are normalization constan
which represent the relative probabilities of the three diffe
tumbling models (see below). Equation [10a] is, of cou
equivalent to directly taking the product over all residues o
marginal densities for the apparent tumbling correlation
tm,app

(i ) , as described previously (4). A graphical representation
Eq. [10] and the overall organization of the probability de
ties are shown in Fig. 1. It should be noted that for
parameterization, it is necessary in Eq. [10b] to allow all t
Euler angles to vary whenRaxial 5 1, even though there are on
two angular degrees of freedom. This is because in that
rotations about the symmetry axis (thex axis of the PAS
correspond to a nontrivial function off, u, andx. For purpose
of this study, we define the priorsPaxial(D iso, Raxial, f, u), and
Pasym(D iso, Raxial, Rasym, f, u, x) to be

Paxial~D iso, Raxial, f, u ! 5 Piso~D iso! Paxial~Raxial! P~f! P~u !

[11a]

and

Pasym~D iso, Raxial, Rasym, f, u, x!

5 Piso~D iso! Pasym~Raxial, Rasym! P~f! P~u ! P~x!, [11b]

here the priorsP iso(D iso), P(f), P(u ), andP(x) are taken t
be independent and uniform inside the regionsD iso . 0, 0° #
f # 360°, 0°# u # 180°, and 0°# x # 360°, and equal t

FIG. 1. A schematic representation of the information flow in th
s,

t
,
e
e

i-
r
e

se,

zero outside of those regions. The construction ofPaxial(Raxial)
andPasym(Raxial, Rasym) is described in detail in Appendix A.

COMPUTATIONAL METHODS

Three synthetic data sets corresponding toR1, R2, and NOE
data at spectrometer frequencies of 400 and 600 MHz fo
residues were generated using a variety of realistic loca
namic parameters (includingRex Þ 0) (Table 1) and three
diffusion tensors: isotropic, axially symmetric anisotropic,
fully asymmetric anisotropic (Table 2). The isotropic c
serves as a reference as well as a test of the methodolo
distinguish isotropic tumbling in the presence of chem
exchange from anisotropic tumbling. The data were gene
using the spectral density function for the Lipari–Szabo
malism in the presence of fully asymmetric anisotropic t
bling,

J~v! 5
2

5 FS2 O
k51

5 Aktk

1 1 v 2t k
2 1

~1 2 S2!t

1 1 v 2t 2G , [12]

whereA1 5 3y2z2, A2 5 3x2z2, A3 5 3x2y2, A4 5 d 2 e,
A5 5 d 1 e, d 5 1

4 [3( x4 1 y4 1 z4) 2 1], e 5 1
12 [d x(3x4 1

6y2z2 2 1) 1 d y(3y4 1 6x2z2 2 1) 1 d z(3z4 1 6x2y2 2
1)], d i 5 (Dii 2 D iso)/=D iso

2 2L 2, L 2 5 1
3 (DxxDyy 1 Dxx-

Dzz 1 DyyDzz), t 1
21 5 4Dxx 1 Dyy 1 Dzz, t 2

21 5 Dxx 1
4Dyy 1 Dzz, t 3

21 5 Dxx 1 Dyy 1 4Dzz, t 4
21 5 6(D iso 1

D iso
2 2 L 2), t 5

21 5 6(D iso 2 =D iso
2 2 L 2), t21 5 6D iso 1

te
21, andx, y, andz are the direction cosines of the bond ve

lculation of the posterior probability of a point in tensor parameter spa
e ca



te
lism
e
tio
e

se

zin
d t
el t

o

din
ch
nso
oin

g to
b]
rding
d

the

W
re-

Carlo
la-
uter

nges
f the
rting
sym-
l

c 2).
G oor-
d 1, it
f e to
t arly
p ue 3
d y

to
y,
simu-

to

nge.
from

ities

.0

.0
7

n by

].
d in

)

70 ANDREC ET AL.
in the PAS (8, 17, 19). The standard expressions forR1, R2,
and NOE as a function ofJ(v) (2, 20) were used to evalua
the relaxation rates. The form of the Lipari–Szabo forma
given in Eq. [12] is valid only in the limit thatte is at least on
order of magnitude faster than any of the rotational correla
timest i (i 5 1, . . . , 5) (7). This condition is satisfied by th
parameters used in this study. The uncertaintiess ij in Eq. [6]
were taken to be 5% of the correspondingR1, R2, or NOE
measurement. For demonstration purposes, we have u
uniform value of 2160 ppm for the magnitude of the15N
chemical shift anisotropy (CSA) for generating and analy
the synthetic data used in this study, and it was assume
the CSA tensor was oriented with its symmetry axis parall
the 15N–1H bond vector, even though the case may be m
complicated in real proteins (21–23).

A total of 19,500 Monte Carlo samples distributed accor
to the densityP(S2, t e, Rex, tm,app

(i ) uRi) were generated for ea
residue as described in detail in Appendix B. For each te
three sets of Monte Carlo samples consisting of 39,876 p

TABLE 1
Internal Motional Parameters and Orientations

Used to Generate Synthetic Data

Residue S2

te

(ps)
Rex

(s21 at 400 MHz)

Orientation in
molecular frame

u
(degrees)

f
(degrees

1 0.90 10.0 0 160 30
2 0.88 20.0 0 100 140
3 0.86 100.0 1.92 44 12
4 0.89 250.0 0 62 280
5 0.90 30.0 0 66 240
6 0.80 5.0 1.28 100 279
7 0.94 300.0 0 74 170
8 0.75 700.0 1.60 94 140
9 0.87 350.0 0 67 334

10 0.85 200.0 2.24 103 173
11 0.91 55.0 2.69 152 176
12 0.86 150.0 0 71 71
13 0.88 600.0 0 94 356
14 0.85 3.0 0 123 133
15 0.91 250.0 0 77 90
16 0.87 2.0 1.98 133 297
17 0.94 175.0 0 140 326
18 0.88 30.0 3.39 119 154
19 0.87 3.0 0 28 101
20 0.89 25.0 1.79 30 224
21 0.88 8.0 0.77 71 224
22 0.85 520.0 2.75 99 328
23 0.89 9.0 0 103 174
24 0.90 150.0 0 125 87
25 0.86 73.0 0 61 126
26 0.90 94.0 0 135 263
27 0.87 8.0 0 56 298
28 0.80 94.0 2.05 63 157
29 0.86 472.0 1.79 107 123
30 0.88 12.0 0 80 258
n

d a

g
hat
o
re

g

r,
ts

each were generated: the first was distributed accordin
Paxial(D iso, Raxial, f, u, xuR) calculated using Eqs. [3] and [10
(the SBF approximation), the second was distributed acco
to Paxial(D iso, Raxial, f, u, xuR) calculated using Eqs. [4] an
[10b] (the axially symmetric BLW approximation), and
third was distributed according toPasym(D iso, Raxial, Rasym, f, u,
xuR) using Eqs. [4] and [10c] (the fully asymmetric BL
approximation). Approximately 1 min of CPU time was
quired per residue for theP(S2, t e, Rex, tm,app

(i ) uRi) Monte Carlo
samples, and each tensor parameter estimation Monte
run required approximately 10 min of CPU time. All calcu
tions were performed on a Silicon Graphics R10000 comp
running at 194 MHz.

RESULTS

1. Tensor Parameter Estimation

As was discussed in the Introduction, one of the challe
in the analysis of NMR relaxation data is the separation o
effects of anisotropy and chemical exchange without reso
to independent experimental methods. For Tensor 2, the
metry axis is oriented at (u, f) 5 (30°, 10°) in spherica
oordinates with respect to the molecular frame (Table
iven that symmetry axis orientation and the spherical c
inates of the bond vectors for residues 3 and 5 in Table

ollows that residue 3 is located at an angle of 14° relativ
he symmetry axis of Tensor 2, while residue 5 is ne
erpendicular to that axis (87°). Therefore, even if resid
id not have anRex contribution, itsR2 would be significantl

larger than that of residue 5, and it could be difficult
determine whether the increasedR2 was due to anisotrop
chemical exchange, or both. The calculations based on
latedR1, R2, and NOE data at two field strengths allow us
evaluate the utility of the marginal densitiesP(tm,app

(i ) uRi) for
disentangling the effects of anisotropy and chemical excha
Figure 2 shows a projection of the Monte Carlo samples
P(S2, t e, Rex, tm,app

(3) uR3) and P(S2, t e, Rex, tm,app
(5) uR5) onto the

(Rex, tm,app
(i ) ) plane, as well as a plot of the marginal dens

P(tm,app
(3) uR3) and P(tm,app

(5) uR5). Although the estimates oftm,app
(i )

TABLE 2
Tensor Parameters Used to Generate Synthetic Dataa

Dxx

(ms21)
Dyy

(ms21)
Dzz

(ms21)
D iso

(ms21)b Raxial
c Rasym

d

Tensor 1 14.0 14.0 14.0 14.0 1.0 1
Tensor 2 14.0 14.0 25.0 17.7 1.8 1
Tensor 3 9.8 14.0 25.0 16.3 2.1 0.

a The orientation of the PAS in the molecular frame of Table 1 is give
the Euler anglesu 5 30°, f 5 10°, x 5 50°.

b Isotropic portion of the diffusion tensor, defined in text above Eq. [8
c Axially symmetric anisotropic portion of the diffusion tensor, define

Eq. [8].
d Asymmetry ratio of the diffusion tensor, defined in Eq. [9].
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71DETECTION AND QUANTIFICATION OF ROTATIONAL DIFFUSION ANISOTROPY
andRex are strongly correlated, and lack of knowledge of
magnitude ofRex substantially increases the width of
P(tm,app

(i ) uRi) distributions, nonetheless there is minimal ove
etween the marginal densities for the apparent tumbling
elation timeP(tm,app

(3) uR3) and P(tm,app
(5) uR5) for these two res-

dues. This indicates that there is a significant difference in
tm,app

(i ) values due to orientational effects associated with d-
sional anisotropy and that the increased transverse rela
rate for residue 5 cannot be explained byRex effects alone. Fo
example, it is apparent from Fig. 2 that all values oftm,app

(3)

having appreciable posterior probability are smaller than
value of tm,app

(5) even whenRex is constrained to be zero. W
conclude that by using the marginal densities for the l
tumbling parametertm,app

(i ) , it is possible to separate the effe
of chemical exchange and anisotropy.

The marginaltm,app
(i ) densities can be used to estimate

diffusion tensor parameters and assess the statistical s
cance of different models for the overall tumbling of
protein. This is done by usingP(tm,app

(i ) uRi) together with th
SBF or BLW approximations (Eqs. [3] and [4]) to gener
Monte Carlo samples from the posterior probabilities of
diffusion tensor parametersP(D isouR), Paxial(D iso, Raxial, f, u,
xuR), and Pasym(D iso, Raxial, Rasym, f, u, xuR) as describe
above. The results of these calculations are summarized
form of means and standard deviations of the Monte C

FIG. 2. Monte Carlo samples generated from the local posterior p
ility density P(S2, t e, Rex, tm,app

(i ) uRi) for residues 3 and 5 projected onto
(Rex, tm,app

(i ) ) plane, along with the marginal posterior densitiesP(tm,app
(3) uR3) and

(tm,app
(5) uR5). The minimal overlap between the latter two curves indicates

the differences in the relaxation data for residues 3 and 5 are due at leas
to anisotropy effects, irrespective of any differences in internal motions
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samples (Table 3) and one-dimensional marginal densiti
the tensor parameters as shown in Figs. 3 and 4. As se
Table 3, all three estimation methods (SBF, BLW withRasym 5
1, and BLW withRasym Þ 1) were successful in deriving t
correct diffusion tensor axial asymmetry ratio and orienta
from the synthetic 400- and 600-MHzR1, R2, and NOE dat
for both the isotropic Tensor 1 and the axially symme
Tensor 2. Unlike the results for Tensors 1 and 2, the SBF
BLW(axial) approximations were inaccurate in their estim
of the angleu for the fully asymmetric Tensor 3. This is n
unreasonable, since an axially symmetric model is incorre
this data set. On the other hand, the BLW(asym) method
provide accurate estimates of these parameters for Tenso
well as accurate estimates ofRasym andx.

As indicated in Table 3, the Monte Carlo sample
BLW(asym) exhibits bimodality, with one mode correspo
ing to Raxial . 1 and another withRaxial , 1 (Fig. 5).It should
be noted that although these two modes are far apart inD iso,

axial, Rasym) space, they are in fact contiguous in (Dxx, Dyy,
zz) space, and the bimodality arises from the choice of-

rametrization used in this analysis. Furthermore, as the d
sion tensor becomes more asymmetric, the parameterRaxial has
less physical meaning, since it makes less sense to de
such a tensor as prolate or oblate. However, this in no
invalidates the use of the (D iso, Raxial, Rasym) parametrization a
a computational device. Recent work by Blackledgeet al. (24)
has suggested that the fitting of a fully anisotropic diffus
tensor by an axially symmetric one can result in the sum
squared residual surfaces with multiple minima (or equ
lently, multimodal likelihood functions). This bimodal
arises from the (mis)fitting of an axially symmetric tensor
fully anisotropic tensor using either the major or minor axi
the latter as the symmetry axis of the former, and is unre
to the (Raxial, Rasym) bimodality described above. We do, ho-
ever, also observe a second mode located atD iso 5 17ms21 and
Raxial 5 0.6 when fitting Tensor 3 data with the SBF a
BLW(axial) approximations. The maximum posterior pro
bilities of those modes are a factor of 3000 smaller than
maximum posterior probability of the modes listed in Tabl
and we conclude that the probability mass contained in t
modes is negligible for these synthetic data.

It is interesting to note that for these synthetic data set
expectation values ofD iso are overestimated (compared to
estimated uncertainty inD iso) for both Tensor 1 and Tensor
irrespective of the analysis method used. This arises from
fact that the probability densitiesP(S2, t e, Rex, tm,app

(i ) uRi) can
have substantial skewness, especially with respect totm,app

(i ) .
This is the case for many of the 30 residues in this synt
data set, except for residues having very small (,10 ps) o
large (.200 ps)te values. This skewness results in marg
densities that are biased toward smaller values oftm,app

(i ) , even
hough the maximum ofP(S2, t e, Rex, tm,app

(i ) uRi) occurs at th
correct value oftm,app

(i ) . Thus, proteins which have a lar
number of residues withte values on the order of tens
picoseconds (such as the simulated 30-residue protein
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72 ANDREC ET AL.
here) can give biased estimates ofD iso, while proteins with
relatively few residues withte’s in that range will have mor
accurate estimates ofD iso. Such bias would also be propaga
into the local dynamical parameters, especiallyRex. While the
estimate ofD iso does differ by more than 5 standard deviati
for Tensor 1, the relative error is only 4%, and will result i
systematic overestimation ofRex of at most 0.3 s21 at 400 MHz
(based on the linear correlation betweenRex andtm,app

(i ) shown in
Fig. 1). It should be noted that the correct value ofD iso is also
recovered as the uncertaintiess ij approach zero forte values in
any regime.

2. Assessment of Statistical Significance

Estimates of the marginal densitiesP(RaxialuR) and
(RasymuR) (Figs. 3 and 4) are also extremely useful in that t

provide a straightforward method for the determination of
statistical significance ofRaxial and Rasym. From a classica
tatistical perspective, the statistical significance of a m
arameter is often determined via theF statistic, which is
elated to the ratio of likelihoods for the two hypotheses a
est fit values of the parameters (25). In the Bayesian perspe

ive, the evidence in favor of any given model is given by

TAB
Results of Tensor Paramete

Tensor 1

SBF
BLW
(axial)

BLW
(asym) SBF

D iso (ms21) 14.56 0.1a

(14.0)b
14.56 0.1 14.56 0.2 18.56 0.2

(17.7)

Raxial 0.996 0.08
(1.0)

0.996 0.08 1.06 0.1 1.96 0.2
(1.8)

Rasym n/a
(1.0)

n/a .0.93c n/a
(1.0)

f (degrees) Uniform Uniform Uniform 96 7
(10.0)

u (degrees) Uniform Uniform Uniform 316 4
(30.0)

x (degrees) n/a n/a uniform n/a

a Parameter estimates and errors correspond to the means and stan
b Values in parentheses indicate the values used to generate the syn
c Lower bounds onRasym correspond to the value of the 5th percentile o

ll the other parameters) thatRasym is smaller than the indicated value.
s
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marginal likelihood of the data,” which is simply the norm
zation factorP(R) in Eq. [5] or [10]. We can compare t
evidence for two competing models by taking the ratio of
marginal likelihoods of the data for each model. This rati
known as the Bayes factorB1,2, and gives the odds in favor
model 1 in the numerator over model 2 in the denomin
(assuming that the models are equally likelya priori) (18, 26).
Furthermore, it follows from its definition that the Bayes fac
is symmetric with respect to the hypotheses; i.e., the od
favor of model 2 (B2,1) is simply the reciprocal of the odds
favor of model 1.

In the context of diffusion tensor estimation, there are
hypothesis tests of interest: (1) how much evidence is the
isotropic tumbling and against axially symmetric anisotro
tumbling? and (2) how much evidence is there for fully an
tropic tumbling and against axially symmetric tumbling? Th
two questions can be answered using the Bayes factorsB iso,axial

5 P iso(R)/Paxial(R) and Basym,axial 5 Pasym(R)/Paxial(R), where
the marginal likelihoods of the data are defined in Eq. [10
general, computing a Bayes factor is far from trivial, a
requires knowledge of the normalization constants which
dinarily can be obtained only from multidimensional integ

3
stimates for Synthetic Data

Tensor 2 Tensor 3

BLW
(axial)

BLW
(asym) SBF

BLW
(axial)

BLW
(asym)

18.06 0.2 Mode 1:
18.16 0.2
Mode 2:

18.46 0.3

17.26 0.3
(16.3)

16.46 0.2 Mode 1:
16.46 0.2
Mode 2:

16.56 0.2
1.76 0.2 Mode 1:

1.7 6 0.2
Mode 2:

0.636 0.07

2.3 6 0.2
(2.1)

2.16 0.2 Mode 1:
2.0 6 0.2
Mode 2:

0.456 0.05
n/a Mode 1:

.0.80
Mode 2:

0.776 0.06

n/a
(0.7)

n/a Mode 1:
0.706 0.07

Mode 2:
0.656 0.05

10 6 8 Mode 1:
9 6 8

Mode 2:
5 6 14

9 6 5
(10.0)

9 6 4 Mode 1:
10 6 5
Mode 2:
10 6 6

31 6 4 Mode 1:
31 6 5
Mode 2:
30 6 8

35 6 3
(30.0)

36 6 3 Mode 1:
32 6 3
Mode 2:
30 6 4

n/a Uniform n/a
(50.0)

n/a Mode 1:
51 6 10
Mode 2:
50 6 9

d deviations of the corresponding marginal posterior probability densiti
tic data (reproduced from Table 2 for ease of reference).
e marginal posterior ofRasym; i.e., there is less than a 5% chance (integrated
LE
r E

dar
the
f th



ate
en

B th
m din
p y
t

t an
a by

a
at

e
lows
he

ence
ste-

lly

),
i
in
ong
sors 2
y
etric
n if
one

hesis
t rating
o

e
line

ppro
he

line)
e

d sents
t

73DETECTION AND QUANTIFICATION OF ROTATIONAL DIFFUSION ANISOTROPY
which are analytically intractable and difficult to evalu
numerically (26). However, for the case of nested one-dim
sional hypotheses (such as those corresponding toB iso,axial and

asym,axial above), the Bayes factor can be determined from
arginal prior and posterior densities of the correspon
arameter. In particular (27), if the prior probabilities satisf

he conditions

Paxial~D isouRaxial 5 1! 5 Piso~D iso! [13a]

and

Pasym~D iso, RaxialuRasym5 1! 5 Paxial~D iso, Raxial!, [13b]

hen the Bayes factors for isotropic vs axially symmetric
xially symmetric vs fully anisotropic tumbling are given

Biso,axial5
Paxial~Raxial 5 1uR!

Paxial~Raxial 5 1!
, [14a]

FIG. 3. Plots of the marginal posterior probability densitiesPaxial(RaxialuR)
for Tensor 1 (a), Tensor 2 (b), and Tensor 3 (c), whereRaxial represents th
degree of deviation from isotropic tumbling. The solid and dashed
represent the estimates of that density using the SBF and BLW(axial) a
imations. The arrows represent the values ofRaxial used to generate t
synthetic data.
-

e
g

d

and

Baxial,asym5
Pasym~Rasym5 1uR!

Pasym~Rasym5 1!
, [14b]

respectively, wherePaxial(Raxial 5 1uR) andPasym(Rasym 5 1uR)
re the marginal posteriors of Figs. 3 and 4, andPaxial(Raxial 5

1) andPasym(Rasym 5 1) are the marginal priors evaluated
Raxial 5 1 and Rasym 5 1.3 The conditions of Eq. [13] ar
satisfied by the priors used here, since Eq. [13a] fol
immediately from Eq. [11a], and Eq. [13b] follows from t
fact that any value ofRaxial is consistent withDxx # Dyy # Dzz

and the conditions of Eqs. [8] and [9] whenRasym 5 1,
i.e., Pasym(D iso, Raxial, Rasym 5 1) } Paxial(D iso, Raxial) (see
Appendix A).

We can now make use of Eq. [14a] to evaluate the evid
for or against isotropic tumbling based on the marginal po
riors of Fig. 3 and the marginal priorPaxial(Raxial) 5 P0(Raxial).
From Eqs. [A1] and [A2] it follows that given a physica
reasonable prior range14 # Raxial # 4, Paxial(Raxial 5 1) 5 1

6, and
B iso,axial 5 6Paxial(Raxial 5 1uR). For Tensor 1 (Fig. 3a
Paxial(Raxial 5 1uR) ' 5 for both the SBF and BLW approx-
mations, which giveB iso,axial ' 30. This means that the odds
favor of isotropic tumbling are 30:1, and constitutes str
evidence against the presence of any anisotropy. For Ten
and 3,Paxial(Raxial 5 1uR) is vanishingly small, providing ver
decisive evidence against isotropic and for axially symm
or fully anisotropic tumbling. It should be noted that eve
there is not decisive evidence in favor of a given model,

3 In order to simplify the theoretical presentation, we perform the hypot
esting based on the marginal posteriors and priors obtained after integ
ver the angular parametersu, f, andx.

s
x-

FIG. 4. Plots of the marginal posterior probability densitiesPasym(RasymuR)
for Tensor 1 (solid line), Tensor 2 (dashed line), and Tensor 3 (dotted
using the BLW(asym) approximation. The parameterRasym represents th

egree of deviation from axially symmetric tumbling, and the arrow repre
he value ofRasym used to generate the synthetic data for Tensor 3.
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74 ANDREC ET AL.
can simply perform the analysis using the larger of the ne
models. The resulting parameter estimates will then repr
an “average” (in some sense) over the models which
supported by the data.

We can similarly determine the evidence for or aga
axially symmetric vs fully anisotropic tumbling fro
Eq. [14b]. In this case, we must obtain the marginal p
Pasym(Rasym), which is derived in Appendix A. Substitutin
the prior range overRaxial into Eq. [A3], we find tha
Pasym(Rasym 5 1) ' 2.4. From the marginal posterior den-
ies of Fig. 4 we see thatPasym(Rasym 5 1uR) ' 28.5, 7.6
nd 0.02 for Tensors 1, 2 and 3, respectively. This g
ayes factorsBaxial,asym ' 12, 3, and 0.008, respective

Although there is a greater than 1:1 odds in favor of axi
symmetric tumbling for Tensors 1 and 2, according to
conventions of the Bayesian statistics literature (26) Bayes
factors of this magnitude do not constitute very str
evidence. On the other hand, there is very strong eviden
favor of fully anisotropic tumbling for Tensor 3 (wi
Basym,axial 5 Baxial,asym

21 ' 125).

FIG. 5. Monte Carlo samples generated from the posterior proba
densityPasym(D iso, Raxial, Rasym, f, u, xuR) for Tensor 2 (a) and Tensor 3 (
projected onto the (Raxial, Rasym) plane. The dashed lines indicate the region
he (Raxial, Rasym) plane consistent with the definitions of those parameters
correspond to the curves for whichDzz/Dyy 5 Dyy/Dxx and the distinctio

etween “prolate-like” and “oblate-like” is ill defined. The right-hand reg
orresponds to “prolate-like” (Dzz/Dyy . Dyy/Dxx), while the left-hand regio

corresponds to “oblate-like” (Dzz/Dyy , Dyy/Dxx) ellipsoids.
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3. Comparison with a “Standard” Approach for Estimatio
of Tensor Parameters

A. Synthetic data. It is informative to compare the resu
obtained above to those obtained using the approach often
in the current literature, namely the elimination of resid
with significantte and/orRex values, followed by the estim-
tion of apparenttm values fromR2/R1 and fitting of those to
diffusion tensor (16, 17). In order to estimate overall tumblin
parameters fromR2/R1, it is first necessary to identify an
eliminate residues which have significant contributions f
te Þ 0 and/orRex Þ 0. Residues withte values in the neigh-
borhood ofte 5 0.1 tm have NOE values which are sign-
cantly reduced from those withte 5 0. Therefore, such res-
dues can be identified and eliminated by discarding all res
with NOE values below some cutoff (e.g., NOE, 0.65). It
should be noted that due to the dependence of the NOEte,
this criterion will not detect residues withte values greater tha
'0.25 tm, even though such residues will still have sign-
cantly perturbedR2/R1 values (4). After removal of residue
with nonzerote contributions, one can use Eq. [1] to rem
residues with nonzeroRex contributions. This criterion wa
motivated by the observation that in the presence of rotat
anisotropy, bond vectors aligned along the long axis of
diffusion tensor will experience an increase inR2 which is
correlated with a decrease inR1 (7), while Rex only has an
effect onR2. Therefore, eliminating residues which have la
than averageR2 values and not smaller than averageR1 values
will tend to eliminate residues with significantRex contribu-
tions.

As is well known, in the limit ofte 5 0 andRex 5 0, the ratio
R2/R1 is independent ofS2, and can be used to estimate
apparent overall tumbling correlation timetm,app

(i ) or apparen
rotational diffusion coefficientD app

(i ) 5 (6tm,app
(i ) )21 for each

residuei . These apparent diffusion coefficients can then
related to the diffusion tensor parameters and bond v
orientations via the BLW approximation,

~ xiyizi!SQ11 Q12 Q13

Q12 Q22 Q23

Q13 Q23 Q33

DSxi

yi

zi

D 5 D app
~i ! , [15]

where (xi , yi , zi) are the direction cosines of thei th bond
vector in the molecular frame andQij are the same as in Eq. [
except that they are in themolecularframe and not the PAS
he tensor (16). Equation [15] is linear in the unknownsQij ,
and the set of linear equations corresponding to Eq. [15] fo
i (i 5 1, . . . , N) can be rewritten in matrix form as

1
x1

2 2x1y1 y1
2 2x1z1 2y1z1 z1

2

x2
2 2x2y2 y2

2 2x2z2 2y2z2 z2
2

·
·
·

·
·
·

·
·
·

·
·
·

·
·
·

·
·
·

xN
2 2xNyN yN

2 2xNzN 2yNzN zN
2
21

Q11

Q12

Q22

Q13

Q23

Q33

2 5 1
D app

(1)

D app
(2)

·
·
·

D app
~N!
2 ,

[16]
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75DETECTION AND QUANTIFICATION OF ROTATIONAL DIFFUSION ANISOTROPY
which can be solved by standard linear algebraic method
particular, if we assume that the uncertainty inD app

(i ) is normally
istributed with standard deviations i (as described below

then the maximum likelihood solution for theQij ’s is given by
weighted least-squares fit

1
Q11

Q12

Q22

Q13

Q23

Q33

2 5 @ATdiag~s 1
22s 2

22· · ·s N
22! A# 21

3 ATdiag~s 1
22s 2

22· · ·s N
22!1

D app
(1)

D app
(2)

·
·
·

D app
~N!
2 , [17]

whereA is the matrix of direction cosines on the left-hand s
of Eq. [16], and diag(. . .) is a diagonal matrix having th
indicated elements along the diagonal.

We performed the calculation described above using the
for Tensor 1 (corresponding to isotropic tumbling). Appli
tion of the NOE. 0.65 criterion resulted in the elimination
residues 3, 4, 7–10, 12, 13, 15, 22, 24–26, 28, and 29
criterion of Eq. [1] further eliminated residues 11 and 18.
uncertainty inR2/R1 for the remaining 13 residues was-
sumed to be normal, with a variance estimated by propag
of errors (28) using the same 5% relative errors used in
Bayesian analysis above. The value and uncertainty in
D app

(i ) were estimated using a classical Monte Carlo approac
calculatingD app

(i ) by numerical root finding usingMathematica
(29) for 2000 pseudorandom numbers drawn from the c
sponding normalR2/R1 distribution, and using the variance
the resultingD app

(i ) values as the variance of the assumed no
uncertainty inD app

(i ) . The best fit diffusion tensor elements w
then determined using Eq. [17].

After diagonalization of the best fitQ matrix, the solution
for fitting the data generated using an isotropic system w
fully anisotropic tumbling model was found to beDxx 5 11.5
ms21, Dyy 5 12.5 ms21, andDzz 5 16.5 ms21, correspondin
to reparametrized values ofD iso 5 13.5ms21, Raxial 5 1.38, and

asym 5 0.92. To assess the statistical significance of th
over isotropic tumbling, the fit was repeated with the c
straintsQij 5 0 for i Þ j andQ11 5 Q22 5 Q33. The isotropic
fit also gaveD iso 5 13.5 ms21, and theF statistic for the
improvement in the fit using the anisotropic model (17) was
found to be 5.74, corresponding to a very significantp value of
0.002. Therefore, straightforward application of methods
rently used in the literature for estimation of rotational di
sion anisotropy to small data sets can potentially pro
misleading results, such as the one described here, in
synthetic data generated using an isotropic tumbling m
result in a statistically significant estimated anisotropy
'1.4:1. The origin of this erroneous result is that applicatio
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Eq. [1] failed to eliminate four residues with nonzeroRex

contributions (residues 6, 16, 19, and 21), and the resu
deviations in theR2/R1 values for those residues were pro-

ated into a fictional anisotropy. Although a visual inspec
f theD app

(i ) values as a function of orientation would reveal
residues 6, 16, 19, and 21 are probably outliers abov
otherwise flat “baseline,” this cannot be detected byF testing
alone. A more sophisticated criterion that takes advanta
the quadratic field dependence ofRex such as that proposed
Phanet al. (14) could be used instead of Eq. [1] to detect

liminate residues withRex contributions. The marginal pos-
rior densities oftm,app

(i ) do not suffer from this problem, howev
and estimation of the tensor parameters finds very s
evidence (odds of.300:1) in favor of isotropic vs fully aniso
tropic tumbling without the need to exclude any data.

We repeated this calculation for the fully anisotropic Ten
3 data, and found that the NOE and Eq. [1] criteria elimin
the same 17 residues as for Tensor 1. In this case, the b
fully anisotropic tensor was found to beDxx 5 9.0 ms21, Dyy 5
14.1 ms21, andDzz 5 23.1 ms21, corresponding to reparam-

trized values ofD iso 5 15.4 ms21, Raxial 5 2.0, andRasym 5
0.64. The isotropic fit gaveD iso 5 15.6ms21, and theF statistic
or the improvement in the fit was found to be 34.7, co
ponding to a vanishingly smallp value. In contrast to th
esults for Tensor 1, the results are much closer to the co
alues (Table 2). This striking difference is due to the fact
he variation inD app

(i ) as a function of orientation due to anis-
ropy for Tensor 3 is comparable in magnitude to the pertu
tions inD app

(i ) due to the smallRex contributions in residues 6, 1
19, and 21, and therefore they contribute much less to
overall fit.

B. Experimental data. To demonstrate the applicability
this method to real experimental data and to compar
performance to the “standard” method, we performed a te
estimation calculation for relaxation data obtained on
dimeric Ca21 binding protein S100B(bb) (91 residues/mono-
mer). S100B(bb) is an EF-hand type Ca21 binding protein tha
has been implicated in the neuropathologies of Down’s
drome and Alzheimer’s disease (30), and its structure has be

etermined by NMR methods (31, 32). Estimates of the ma
inal tm,app

(i ) densities for the 65 residues for whichR1, R2, and
NOE data were available at both 400 and 600 MHz w
generated using Eqs. [5]–[7] as described above. An est
of the diffusion tensor parameters for both axially symme
and fully anisotropic tumbling was then made from the m
ginal tm,app

(i ) densities using the BLW approximation. Inform-
ion regarding the dimeric nature of S100B(bb) was included
n the calculation by using orientations for 130 bond vec
orresponding to the 65 residues in each of the two mon
nits. IdenticalP(tm,app

(i ) uRi) densities were assigned to each
the symmetry-related residues. The molecular frame was
sen to coincide with the inertia tensor of the protein struc
as determined by NMR methods, with the dimerC2 symmetry
axis along thex axis of the molecular frame (u 5 90°,f 5 0°).
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76 ANDREC ET AL.
As a test, the calculation was repeated without the symm
information, and the results were consistent with those
sented below, albeit with much larger uncertainties for
tensor parameters. Less than 2 h of CPU time on an SG

10000 processor was required for these calculations.
A summary of the resulting tensor fit is shown in Figs. 6

. The lack of Monte Carlo samples atRaxial 5 1 in Fig. 6
indicates that the marginal posterior densityP(Raxial 5 1uR) is

FIG. 6. Monte Carlo samples generated from the posterior probab
experimental relaxation data obtained on the protein S100B(bb) (thex dimens
the symmetry axis). Each panel corresponds to a projection of the full

FIG. 7. Plot of the marginal posterior probability densityPasym(RasymuR)
generated using the BLW(asym) approximation based on experimental
ation data obtained on the protein S100B(bb).
try
e-
e

d

vanishingly small, which implies overwhelming eviden
against isotropic tumbling. The expectation values and
dard deviations for the axially symmetric tensor param
estimation Monte Carlo areD iso 5 22.3 6 0.1 ms21, Raxial 5
1.176 0.02,u 5 151°6 5°, andf 5 90° 6 8°. It is expecte
that for a symmetric dimer the symmetry axis of the diffus
tensor should be either coincident with or perpendicular to
C2 axis for the dimer. It is clear, based on this analysis, tha
latter is the case for S100B(bb). Based on the marginal po
terior densityP(RasymuR) from the fully anisotropic fit (Fig. 7
we find thatP(Rasym 5 1uR) ' 22, implying an odds of 9:

gainst fully anisotropic tumbling and for axially symme
umbling (based on the priors used under Section 2 of Re
bove).
For comparison, the data were also subjected to a “stan

nalysis of global diffusion. First, those residues for wh
OE , 0.65 at 600 MHz (two C-terminal residues) or was
nown (8 weak or absent and 8 due to overlap at 600 M
ere eliminated from consideration, due to possiblete contri-

butions. After application of the criterion of Eq. [1], 7 of tho
remaining residues were eliminated due to possible exch
contributions toT2 relaxation. Local effective correlation tim
of the remaining 66 residues were calculated on the basis
600-MHz T1/T2 ratios using the program R2R1_TM (A.
Palmer, Columbia University). Using these correlation tim
initial estimates of global diffusion parameters were estim
by the approach of Bru¨schweileret al. (16) and Leeet al. (17),

sing the program QUADRIC_DIFFUSION, version
A. G. Palmer, Columbia University). Isotropic, axially sy

densityPaxial(D iso, Raxial, f, uuR) using the BLW(axial) approximation based
has been dropped sinceRaxial . 1 for all points andx represents rotations abo
of Monte Carlo samples onto a plane corresponding to each pair of pa

ax-
ility
ion
set
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metric, and fully anisotropic ellipsoidal diffusion tensor para
eters were estimated and then subjected to statisticalF testing
Two axial diffusion tensors were found to fit the data w
statistically significant improvement over the isotropic fit. O
was oblate (D iso 5 21.36 0.1 ms21, Raxial 5 0.896 0.01;p ,

023) compared to isotropic, and the other prolate (D iso 5
21.56 0.1 ms21, Raxial 5 1.166 0.01;p , 10210). Although
no classical statistical test is available to test the two ten
against each other, the prolate tensor displayed axn

2 lower than
that of the oblate. Each was subjected to anF test, comparin
an axial tensor to the best fit fully anisotropic tensor (D iso 5
21.56 0.1 ms21, Raxial 5 1.166 0.01,Rasym 5 0.986 0.01).
The anisotropic tensor did not show improvement when c
pared to the prolate tensor (p ' 0.8), whereas significan
mprovement was shown when compared to the oblate t
p , 1026). At 400 MHz, 7 additional residues were lost

weak signal or overlap, and the analysis was repeated fo
remaining 59 residues. Again, both oblate and prolate te
were found to fit the data better than the best isotropic m
with a high degree of statistical significance (p , 1026 and
p , 10218, respectively). The oblate result (D iso 5 21.16 0.1
ms21, Raxial 5 0.896 0.01) allowed significant improvement

oving to a fully anisotropic tensor (D iso 5 21.36 0.1 ms21,
Raxial 5 1.166 0.01,Rasym5 0.986 0.01,p , 10212), wherea
the prolate result (D iso 5 21.36 0.1ms21, Raxial 5 1.166 0.01)

id not (p ' 0.7). Since for both the 400- and 600-MHz d
he prolate axially symmetric tensor was nearly identical to
est fit fully anisotropic tensor (withRaxial 5 1.16 andRasym '

1), and the best fit fully anisotropic tensor in each case re
sented a significant improvement over the oblate axially s
metric tensor, only the prolate axially symmetric tensor
considered further.

An initial estimate of the diffusion tensor parameters ba
on the above analysis was used as a starting point
complete Lipari–Szabo analysis of internal motional para
ters. Data collected at both fields were used simultaneo
and the motional parametersS2, t e, andRex were optimized
An iterative process was performed in which model selec
by statisticalF testing was alternated with optimization
global diffusion parameters, following in large part the met
of Mandel et al. (33), and using the software MODELFRE
version 4.0.1 (A. G. Palmer, Columbia University). For di
sion optimization, only those residues were considered w
data were found to fit well to model 1 (onlyS2 is optimized)
2 (S2, t e), 3 (S2, Rex), or 4 (S2, t e, Rex). Goodness of fit wa
judged by ax2 test at thep 5 0.1 significance level, and anF
test at p 5 0.2 significance was used to discern gen
improvements in the fit for more complex models. For e
residue, the simplest model to pass these criteria was
Several rounds of calculations alternating model selection
diffusion tensor optimization converged (with little variatio
on a diffusion tensor with parametersD iso 5 21.46 0.1 ms21,
Raxial 5 1.16 6 0.03, u 5 141 6 4°, and f 5 90°. For
computational efficiency, the coordinates of only one sub
were included in the MODELFREE runs, whilef was con
-
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strained to 90° to maintain the condition ofC2 symmetry abou
the x axis.4 A total of approximately 60 h of CPU time on
SGI R10000 processor was required for these calcula
Details of the complete analysis, as well as a comparison o
results for internal motion using MODELFREE to those us
the Bayesian marginal density approach, will be publis
elsewhere. The tensor parameter estimates are obviou
very good agreement. Only the estimates ofD iso differ signif-
icantly compared to the estimated uncertainties, with
Bayesian estimate being larger by'1 ms21, and are consiste
with possible bias due to skewness of the posterior proba
density, as described above.

DISCUSSION

We have shown that the use of marginal probability dens
for tm,app

(i ) based only onR1, R2, and NOE data collected at tw
easily accessible spectrometer field strengths (400 and
MHz) can be used to reliably detect, quantify, and asses
statistical significance of rotational diffusion anisotropy
macromolecules without making assumptions about the n
and distributions of internal motions. In particular, the fi
strength dependence of the chemical exchange contribut
R2 can be used to separate the effects of chemical exch
and anisotropy without the need for additional experime
data from rotating frame or cross-correlated relaxation ex
iments. However, it should be noted that the formalism
sented here can easily accommodate such data with no c
whatsoever to the overall theory, since such data cou
incorporated at the level of the likelihood and prior densitie
Eq. [5]. For example, independent knowledge ofRex obtained
from rotating frame relaxation dispersion experiments cou
used to reduce the width of the marginal densities oftm,app

(i ) due
to the correlation among those two parameters (Fig. 2).

In general, both the SBF and BLW approximations perf
well, with the BLW providing slightly more accurate estima
of D iso as well as allowing for the estimation of fully anisot-

ic tumbling tensor parameters. Although the authors ind
hat the BLW approximation is valid only for small anisot
ies (16), our results indicate that it can still give excell
stimates of the diffusion tensor parameters even for anis
ies on the order of 2:1 (Table 3). Therefore, unless
xpected anisotropy is quite large (substantially greater
:1), the BLW approximation seems to be the method of ch

or tensor parameter estimation.
Given the very different data analysis strategies of

ayesian and “standard” approaches, it is interesting an
ssuring that the resulting tensor parameter estimates gen
gree very well (except for the case of the Tensor 1 synt
ata). The amount of CPU time required for the two calc

4 A comparison was made of two runs of MODELFREE in which the
ifference was that one used coordinates from a single subunit while h

f at 90°, and the other used both subunits and allowedf to float. Though th
latter took considerably more CPU time, the tensor parameter estimate
indistinguishable.
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tions, however, is significantly different, especially when u
MODELFREE to estimate uncertainties in the diffusion ten
parameters. Although reasonable search parameters wer
sen for the MODELFREE analysis of the experimental da
is possible that the calculations could have been perform
less time. The Bayesian approach avoids the guesswo
volved in choosing the parameter space sampling, and in
case required less total CPU time by approximately a fact
30. This is due to the fact that the marginalP(tm,app

(i ) uRi) den-
sities summarize the tumbling correlation time informa
more efficiently, and due to the avoidance of computation
intensive nonlinear optimization (4). It should be noted, how
ever, that this comparison is appropriate only if the desired
product is the tensor parameter estimate. This is becau
MODELFREE calculation also provides final estimates of
internal motional parameters, whereas in the Bayesian
proach, the global tensor parameter information would
have to be propagated back into the local parameter esti
(4). We estimate that even in that case, the Bayesian app
is at least a factor of 6 faster.

The ability of the Bayesian approach to disentangle
effects of chemical exchange and anisotropy with a min
amount of experimental data suggests that if more data
ticularly from transverse and longitudinal cross-correlated
laxation (12), were collected and analyzed in this manner,
might be able to address questions about other contributio
15N relaxation. One such question which has attracted s
interest recently involves the possible variations in the ma
tude and orientation of the15N CSA tensor (21–23). Such
ariations are of particular interest since they can affec
erformance of NMR experiments based on the TRO
ethod (34, 35).

CONCLUSIONS

In conclusion, our formalism not only provides accu
estimates of the “best fit” tensor parameter values, bu
posterior probability density function provides a full char
terization of the uncertainty in the tensor parameters, inclu
any statistical correlations, skewness, and multimodality.
thermore, it provides a simple way to assess the stati
significance of different models for the diffusion tensor
terms of Bayes factors, all with very reasonable amoun
computer time. We have validated the accuracy and utili
our methodology with synthetic data, and have demonst
an application to real experimental data. Although our
proach requires more than the three standard relaxation
surements per residue, access to multiple spectromet
becoming more common, and the collection of relaxation
at multiple field strengths is becoming more routine. We
lieve that the use of multiple field strengths and relaxa
types (such as cross-correlated relaxation) will be critica
reliably disentangling the effects of anisotropy, chemical
change, and variations in chemical shift anisotropy. The
tistical approach described in this paper provides a sim
g
r
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reliable, and efficient tool for the simultaneous analysi
these data. Software implementing this approach will be a
able at http://www-nmr.cabm.rutgers.edu.

APPENDIX A

A normalizable (“proper”) priorPaxial(Raxial) can be con-
structed in several ways. The simplest is to define a r
(Raxial

(min), Raxial
(max)) over which Paxial(Raxial) is equal to a nonze

constant, and setPaxial(Raxial) 5 0 outside of that range. How-
ever, such a prior suffers from an asymmetry in its treatme
prolate- and oblate-like ellipsoids. Suppose that one wish
represent the highly uninformative prior knowledge that
tensor is prolate with an undefined upper bound (i.e.,#
D i/D' , `). Such a prior overRaxial would obviously be
improper, since it is equal to a constant over an unbou
region. On the other hand, the analogous prior for ob
tensors would be equal to a constant over theboundedregion

, Raxial # 1, leading to a proper prior overRaxial. In order to
treat prolate and oblate tensors on more equal terms, we
the priorPaxial(Raxial) such thatD i/D' is uniformly distributed
for prolate tensors, whileD'/D i is uniformly distributed fo
oblate tensors (forRasym 5 1). After accounting for the chan
of variableRaxial 5 (D'/D i)

21 (36), this leads to

Paxial~Raxial! 5 5
0, Raxial , Raxial

~min! # 1
kRaxial

22 , Raxial
~min! # Raxial # 1

k, 1 . Raxial $ Raxial
~max!

0, Raxial . Raxial
~max!

, [A1]

where the normalization constantk is given by

k 5
Raxial

~min!

1 1 Raxial
~min!~Raxial

~max! 2 2!
[A2]

for 0 , Raxial
(min) , 1 andRaxial

(max) . 1. For all calculations in th
paper, we will chooseRaxial

(min) 5 1
4 and Raxial

(max) 5 4. It should be
noted that the choice of prior range typically has minimal e
on the parameter estimation problem, since the prior is
mally much flatter than the likelihood function. On the ot
hand, the prior can have a more substantial effect on the B
factors (Eq. [14]), as discussed under Results.

In the fully anisotropic case, the prior overRaxial and Rasym

cannot be factored into independentRaxial and Rasym contribu-
tions, since not all points in the (Raxial, Rasym) plane are feasib
a priori. It can be shown that the definitions ofRaxial andRasym

imply a joint prior Pasym(Raxial, Rasym) } Paxial(Raxial) f(Raxial,
Rasym), where the functionf(Raxial, Rasym) is equal to 1 in th
regions bounded by the curvesRasym 5 1 and

2Rasym
2

~1 1 Rasym!
5 Raxial
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for Raxial # 1 (i.e., the region whereRaxial # 1, Dzz/Dyy ,
Dyy/Dxx, andDxx # Dyy # Dzz), andRasym 5 1 andRasym(1 1
Rasym) 5 Raxial for Raxial . 1 (i.e., the region whereRaxial $ 1,
Dzz/Dyy . Dyy/Dxx, andDxx # Dyy # Dzz), and 0 elsewher
Although the full normalized expression forPasym(Raxial, Rasym)
s quite cumbersome and will not be given here, the norma

arginal prior densityPasym(Rasym) evaluated atRasym 5 1
which is required for testing for fully anisotropic tumbli
sing Eq. [14b]) is given by the very simple expression

Pasym~Rasym5 1! 5 Raxial
~max! 1 ~Raxial

~min!! 21 2 2 [A3]

for 0 , Raxial
(min) , 1 andRaxial

(max) . 1.

APPENDIX B

Monte Carlo sampling from the densitiesP(S2, t e, Rex,
tm,app

(i ) uRi), Paxial(D iso, Raxial, f, uuR), andPasym(D iso, Raxial, Rasym,
f, u, xuR) was accomplished using the Gibbs algorithm (37),

hich is a special case of the Metropolis algorithm (38) in
hich moves are made using points generated from condi
ensities, thereby ensuring an acceptance probability of
rder to avoid the often strong nonlinear correlations betw
2 andte (39, 40), the sampling fromP(S2, t e, Rex, tm,app

(i ) uRi)
was performed in the reparametrized space (JN, JH, Rex, tm,app

(i ) ),
whereJN and JH are the Lipari–Szabo spectral densities-
culated using Eq. [2] as a function ofS2, t e, andtm,app

(i ) at the
Larmor frequencies of15N and 1H at 400 MHz proton fre-

uency. Sampling from the univariate conditional dens
as performed with a “slicing” algorithm using the “steppi
ut” method (41) and sampling widths of 0.005, 0.0005, 0
nd 0.5 forJN, JH, Rex, and tm,app

(i ) , and 10.0, 10.0, 2.0, 30.
30.0, and 30.0 forD iso, Raxial, Rasym, f, u, andx, respectively
In order to make sampling from correlated densities m
efficient, the “overrelaxation” method described by Neal41)
was used for 40 consecutive iterations, interspersed with
simple Gibbs iteration.

The marginal posterior densityP(tm,app
(i ) uRi) for each residu

was estimated from the Monte Carlo samples using a un
ate Gaussian kernel density estimator (42) from the Monte
arlo samples,

P~t m,app
~i ! uRi! <

1

Î2pKh
O
j51

K

expS2
~t m,app

~i ! 2 @t m,app
~i ! # j!

2

2h2 D ,

[B1]

where [tm,app
(i ) ] j is the tm,app

(i ) component of thej th Monte Carlo
sample fromP(S2, t e, Rex, tm,app

(i ) uRi), K is the total number o
onte Carlo samples used to construct the density esti
nd the “window width”h was chosen using Terrell’s “max

mal smoothing” criterion (43) based on the standard deviat
of the [tm,app

(i ) ] j points. For improved computational efficiency
the tensor estimation calculations, the logarithm of each
d

al
In
n

l

s

,

e

ne

r-

te,

r-

ginal densityP(tm,appuRi) was represented in the form of
Chebycheff polynomial expansion (44) of order 40 in all sub
equent calculations.
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6. R. Brüschweiler, X. Liao, and P. E. Wright, Long-range motional
restrictions in a multidomain zinc-finger protein from anisotropic
tumbling, Science 268, 886–889 (1995).

17. L. K. Lee, M. Rance, W. J. Chazin, and A. G. Palmer III, Rotational
diffusion anisotropy of proteins from simultaneous analysis of 15N
and 13Ca nuclear spin relaxation, J. Biomol. NMR 9, 287–298
(1997).

8. D. S. Sivia, “Data Analysis: A Bayesian Tutorial,” Oxford Univ.
Press, Oxford (1996).

9. D. E. Woessner, Nuclear spin relaxation in ellipsoids undergoing
rotational Brownian motion, J. Chem. Phys. 37, 647–654 (1962).

0. A. Abragam, “Principles of Nuclear Magnetism,” Oxford Univ.
Press, Oxford (1961).

1. D. Fushman, N. Tjandra, and D. Cowburn, Direct measurement of
15N chemical shift anisotropy in solution, J. Am. Chem. Soc. 120,
10947–10952 (1998).

2. J. Boyd and C. Redfield, Defining the orientation of the 15N shield-
ing tensor using 15N relaxation data for a protein in solution, J. Am.
Chem. Soc. 120, 9692–9693 (1998).

3. C. Scheurer, N. R. Skrynnikov, S. F. Lienin, S. K. Straus, R. Brüs-
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