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It has recently become more widely appreciated that the pres-
ence of rotational diffusional anisotropy in proteins and other
macromolecules can have a significant affect on the interpretation
of NMR relaxation data in terms of molecular motion. In this
paper, we show how commonly used NMR relaxation data (R,, R,
and NOE) obtained at two spectrometer frequencies can be ana-
lyzed using a Bayesian statistical approach to reliably detect and
quantify the degree of rotational diffusion anisotropy. Our ap-
proach differs from previous methods in that it does not make
assumptions concerning the internal motions experienced by the
residues which are used to quantify the diffusion anisotropy, but
rather averages the results over all internal motions consistent
with the data. We demonstrate our method using synthetic data
corresponding to isotropic, axially symmetric anisotropic, and
fully asymmetric anisotropic rotational diffusion, as well as exper-
imental NMR data. We compare the Bayesian statistical approach
with a widely used method for extracting tumbling parameters
using both synthetic and experimental data. While it can be dif-
ficult to separate the effects of chemical exchange from rotational
anisotropy using this “standard” method, these effects are readily
separated using Bayesian statistics. In addition, we find that the
Bayesian statistical approach requires considerably less CPU time
than an equivalent standard analysis. © 2000 Academic Press

Key Words: backbone dynamics; Lipari-Szabo formalism; rota-
tional correlation time; Monte Carlo; multiple fields; chemical
exchange.

INTRODUCTION

ple, given a protein whose shape can be well approximated t
a prolate ellipsoid, bond vectors parallel to the long axis will
display significantly faster transverse relaxation raRg than
those perpendicular to the long axis. If one incorrectly assume
that a protein is spherical, then the estimate of the overa
correlation time could be dominated by a relatively large
number of bond vectors oriented perpendicular to the symmie
try axis, and one might erroneously attribute a contribution tc
R, from chemical exchangeR(,) for those oriented along the
symmetry axis 8, 6).

Methods which estimate the overall tumbling parameter
from the ratio of the transverse and longitudinal relaxatior
rates R,/R;) must somehow eliminate from consideration all
residues which in factlo have significant contributions from
chemical exchange processes, as their inclusion would cau
systematic error in the resulting parameter values. One cor
monly used method for achieving this selection is to removi
residues which satisfy the criterion

(T~ Tow (T)-T,

(T Ty ~1°sb

[1]

whereT,, andT,, are the longitudinal and transverse relax-
ation time constants for residme the means are taken over all
residues for which the steady-state heteronuclear NOE

greater than 0.65, and SD represents the standard deviation
the left-hand side of Eq. [1] over all residues (NOEOQ.65)

It is well known that NMR is a powerful tool for the study(7, 8. Clearly, this criterion makes assumptions about the

of internal motions in macr0m0|ecu|e$'(2)_ However, inter- distribution of internal motions in the protein (e.g., that most
pretation of such data in terms of internal motions is contingef@tsidues in the molecule do not haRe, contributions). The

upon the accurate description of the overall tumbling of tEnalysis is further complicated by the possible attribution o
molecule in solutiong, 4). It has recently become more widelyRe« contributions to residues which in fact are not undergoing
appreciated that the neglect of rotational diffusional anisotrogfiemical exchange but have orientations very close to th
can result in potentially serious misinterpretation of the NMRaajor diffusion axis §). Separation of anisotropy and chemical
relaxation data in terms of molecular motid) §). For exam- €xchange effects using rotating frame relaxation dispersio

(9-11), cross-correlated relaxatiorld), or residual dipolar
couplings has been proposed; however, these methoc
' To whom correspondence should be addressed. Fax: (732) 445-5958. p %h 6) | tati P ? dditi | . tal thod
E-mail: ronlevy@Iutece. rutgers.edu. require the implementation of additional experimental metho
2To whom correspondence should be addressed. Fax: (732) 235-4d3gyond the measurement Bﬁ: R,, and heteronl_ldear NOE.
E-mail: guy@nmrlab.cabm.rutgers.edu. Such methods can be experimentally challenging and can |
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prone to additional systematic errors beyond those inherentviectors for which there are relaxation data, which must b

the traditional set of relaxation experiments. One could alebtained from a high-resolution NMR or X-ray crystal struc-

detectR., contributions via their quadratic dependence on thare.

spectrometer field strength, and several laboratories have trie@wo different approximate expressions fejf,,,in terms of

to make use of this information8(13, 14. Our approach the diffusion coefficients and orientation have been propose

makes use of a general statistical formalism within which it iEhe first, proposed by Schurr, Babcock, and Fujima3d (

possible to combine relaxation data obtained at multiple spg€&BF), assumes that the ellipsoid is axially symmetric (i.e.

trometer fields (or other sources) and the effects of rotatioria}, = b, = D,, = D,, = D, (prolate), orD,, = D,, =

anisotropy and chemical exchange can be separated. D, = D, = D; (oblate)). In this case, the bond vector
Rather than reducing the amount of data used in the estinasientation for residué is given by the angl®; of the bond

tion of overall tumbling by neglecting residues which mayector relative to thé, axis. The SBF approximation is then

potentially haver, or R, contributions, it is possible to makegiven by

use of all of the relaxation data, while at the same time

avoiding unnecessary assumptions concerning the internal mo-

tion gxperienced _by any given residue. As we have dgscriped . 1(3 o0 — 1)2 3 cogsin?0, 2 sin%,

previously, such |nf(_)rmat|on.can be u;efully sumr_nanzed_m Timapp = 6D, + 5D, + D, + 2D, + 4D,

the form of a Bayesian marginal posterior probability density

function @). In this paper, we show how these marginal den- (3]

sities for the apparent rotational correlation timg,,, con

structed U-SingRl, R,, and NOE data collected at two _specThe latter, proposed by Bsghweiler, Liao, and Wright1)
trometer field strengths can be used to detect, quantify, a@ﬂ_w), does not assume axial symmetry, but is valid only for
assess the statistical significance of rotational diffusion anise{sy,1” anisotropies. It is given by

ropy in macromolecules.

THEORY (6T§ri1),ap;) = Qxxxi2 + nyyi2 + szzizi [4]

We consider'H-"N internuclear vectors whose internal
motions can be described by the Lipari-Szabo “model-fre@iherex;, y;, andz; are the direction cosines of the internuclear
formalism (L5), in which the spectral density is given by  vectori relative to the PAS an@); is the diffusion coefficient
for the motion of theth axis of the PAS and is given [§y,, =
2 S?7,, (1- 597 (Dy, + D,)/2, Qy = (D + D,)/2, andQ,, = (D +
Nw) = 51+ w372 * 1+ w?r2|’ [2] Dy)/2 (7). . . . .

As we have described previousl)( given a set of (j =

) ) o ) 1, ....n) NMR relaxation measuremerf®; for each of the
whereS’? is a measure of the spatial restriction of the |ntern§| =1, ...,N) residues one can construct the joint posteriol
motion, 7. is a measure of the timescale of the internal motiop,opapility density for the model parameters. In the following,

™o is the rotational correlation time for the overall isotropigg il represent a given relaxation measuremgfe.g., R,
1 ij Y ’

tumbling, andr ™~ = T T In adzdition, we model the g, or NOE) for a given residué, R, will represent the
effect of chemical exschange &, = wyd., Wherewy is the  complete vector of relaxation measurements for residaad
Larmor frequency of"N and®.,, is a constant that depends orR || represent the complete set of relaxation data for al
the chemical shift differences, populations, and interconversigisiques. The local posterior probability density for residise
rates for the exchanging specie. ( constructed by applying the Bayes theorem to the likelihood c

Consider a set of bond vectors embedded in an ellipsqik gata and the prior probability of the parametdi®),(
undergoing rotational diffusion wit®,, = D,, = D,,, where

D, is the diffusion coefficient for reorientation about thh

axis of the principal axis system (PAS) of the molecule. Note P(S? 1o, Ry, Tﬁ.iq)apJRi)

that in our conventionD,, is the largest of the diffusion ' _ ,
coefficients, and is unrelated to any symmetry which may be _ P(RS? 7, Reyy Thapd P(S% 7o, Rew Thnapd .
present. If we fit the adjustable parameters of Eq. [2] to the B P(R) [l
relaxation data for each bond vector while allowifygto vary

independently, then the resulting appareptvaluesr!,,,, for

all residues are approximately determined by tbg’s and the where P(R;) is a normalization constant. The likelihood of
orientation of theth bond vector in the PAS3( 7, 19. In order observing the dat&; given that the underlying dynamic pro
to make use of this information for the analysis of dynamicsgsses are described by the given value§ofr,, R, and
one must know the relative orientations of all of the bondﬁQappis taken to be
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12 () 2D .
P(Rl‘s ] Tey ReX! Tm,app) ﬁ, DzJDyy> Dyy/Dxx (prOIate_Ilke
.t p{—(Ru - Rffa'%z] g | o .

- & ’ =~ ~, Dz/Dy,<D,/D, (oblate-li
=1 \//T(Tﬁ Z(Tﬁ Dyy+ Dzz, Zj yy yyj ( | e

(8]

%he parameteR,,,, describes the degree of deviation from
axial symmetry, and is defined to be

whereR{™? is thejth relaxation parameter calculated using th
given values of’, 7., R.,, andr\),,, ando; is the uncertainty
in the jth observed relaxation value for thth residue. The
prior probabilityP(S, 7., Re. T iS taken to be equal to one

in the region 0< S$* < 1, 7, = 0, Ry, = 0, 7)., > 0, and Dw JD,,> D,/D,, (prolate-like

zero outside of this region. We can summarize the information o, _ | Dy’ G ]
content regarding!,,,,in the dateR; by means of the marginal asym— | Dy, Lot
posterior probability density of%),; D,,’ D24Dyy < Dy/Dy (oblate-likg

R.sym IS Obviously equal to 1 for axially symmetric tumbling.
P(T8adR) = f P(S? Te Rew Thapd R)ASPdT AR, [7] Given an orientation for eaci—'*N internuclear vectorin
an arbitrarily chosen molecular frame (e.g., the coordinat
system of a PDB file), we can use Eq. [3] or [4] to calculate the
The marginal densityP(r.,{R;) can be thought of as theexpectedr!),,, value for that vector as a function of the six
knowledge that we have about the valuer@gppaveraged over tensor parametergg{am([)ism Raiar Rasym @, 0, X)- It should be
all possible internal motions (values &, 7., and R.) emphasized that the anglés6, andy relate the orientation of
weighted by their consistency with the data. Although thge PAS to the molecular frame, and do not represent orient
integral in Eq. [7] cannot be solved in closed form, it isions of individual bond vectors. We can then evaluate the
nonetheless quite straightforward to generate a Monte Cagitobability of a point in the tensor parameter space by takin
sample of points distributed according ®(S’, 7., Re. the product of the marginal probability densities over Ml
TmapdRi), from which a numerical approximation to the funcresidues evaluated at their respective expeefid, values.
tion P(7{).,R;) can be generated (see Appendix B).(itis Under the assumptions of isotropic, axially symmetric aniso
clear that at least four re_Iaxation data must be includer] for tropic, and fully asymmetric anisotropic tumbling, respec-
the marginal densitP(r{).,JR;) to be informative, since oth tively, the posterior probabilities are given by
erwise the parameter estimation problem is underdetermined.
Thus, the traditionaR;, R,, and NOE measurements at one N
field strength must be supplemented with additional data, eithe _ (i) _ _
by repeating the measurements at a different field strength or so(DisdR) E P(Tmaod Disor Raxia = 1, Rasym = 1)[R)
by including cross-correlated relaxation dadi. (
For the general case of fully asymmetric anisotropic tum- X Piso( Diso)/Piso R) s [10a]
bling, the diffusion tensor can be described by six parameterszpaxial(Diso, Raas &, 6, x|R)
the three principle value,,, D,,, andD,, and the three Euler
angles ¢, 0, and x describing the orientation of the PAS N
relative to an arbitrarily chosen molecular reference frame. On =[] P(Tﬂﬂapr(Diso, Raxiav Rasym= 1, ¢, 0, x)|R)
the other hand, for axially symmetric tumbling, the diffusion i=1
tensor is usually described by the four paramelzrsD |, ¢,
and 6, whereD; andD , were defined in Eq. [3] above, arfl
and 6 give the orientation of the symmetry axis in the molec-
ular frame. In order to more easily compare results for axial@ﬁ
symmetric and fully anisotropic fits and to be able to more
easily constrain the BLW approximation to axial symmetry, it Pasy Diso Raxian Rasym &, 0, X|R)
is convenient to introduce the following parameté@s;, R N
andR.,m Dis, is the magnitude of the isotropic portion of the _ (i) _ _ _
diffusion tensor and is given byD(, + D,, + D,)/3 or [1 PrRaf Do R Rasym ¢ 6, X)IR)
(2D, + Dy)/3. TheparameterR,,, describes the degree of
axially symmetric anisotropy; it has values less than 1 for X Pasynf Disor Raxiav Rasym @5 0, X)/PagynfR),  [10c]
oblate ellipsoids and greater than 1 for prolate ellipsoids. For
axially symmetric tumblingR... is simply equal toD,/D,. where R represents the relaxation data for &l residues,
For the BLW approximation, we define it to be Piso(Diso)s Paxia( Disor Raxianr @ 05 x), ANAP a5yl Diso, Raxiats Rasym

X PaxiaI(DiSO! I:'2a>(iala ¢| 61 X)/PaxiaI(R)v [10b]

i=1
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FIG. 1. A schematic representation of the information flow in the calculation of the posterior probability of a point in tensor parameter space.

¢, 0, x) are the prior probabilities over the tensor parameteizgro outside of those regions. The construction 9f.(Rayia)
andP(R), Paxia(R), andP,s,(R) are normalization constantsand P ¢ Raar Rasyn) iS described in detail in Appendix A.
which represent the relative probabilities of the three different

tumbling models (see below). Equation [10a] is, of course, COMPUTATIONAL METHODS

equivalent to directly taking the product over all residues of the

marginal densities for the apparent tumbling correlation time Three synthetic data sets correspondin®tpR,, and NOE
Thap @S described previouslg) A graphical representation of gata at spectrometer frequencies of 400 and 600 MHz for 3
Eq. [10] and the overall organization of the probability densfesijdques were generated using a variety of realistic local dy
ties are shown in Fig. 1. It should be noted that for oWamic parameters (including., # 0) (Table 1)and three
parameterization, it is necessary in Eq. [10b] to allow all thregffysion tensors: isotropic, axially symmetric anisotropic, anc
Euler angles to vary wheR,;, = 1, even though there are onlygy|ly asymmetric anisotropic (Table 2). The isotropic case
two angular degrees of freedom. This is because in that caggies as a reference as well as a test of the methodology
rotations about the symmetry axis (theaxis of the PAS) gistinguish isotropic tumbling in the presence of chemica
correspond to a nontrivial function df, 6, andy. For purposes exchange from anisotropic tumbling. The data were generats
of this study, we define the prioB.a(D i Rada, ¢, 6), @nd  ysing the spectral density function for the Lipari-Szabo for-
Pasyr{Disor Raxiann Rasym ¢, 0, X) to be malism in the presence of fully asymmetric anisotropic tum:
bling,
PaxiaI(DiSOl Raianr @, 6) = Piso(Diso) PaxiaI(Raxial) P((b) P(G)
[11a] ATy (1-S)r
1+ w?r2 1+ w?r?|

2 5
o) =g |S* 2

k=1

[12]

and

whereA, = 3y*z% A, = 3x°Z°, A; = 3x’%y*, A, = d — ¢,

Pasyn‘(Disoa Raxial Rasym ¢, 0, X) As=d+ed= %[3(X4 + y4 + Z4) - 1], e= ﬁ[SX(Bx“ +

— D (N _ 6y’z* — 1) + 8,(3y* + 6x°2° — 1) + §,(3z" + 6x%y* —

PISO(DISO) Pasyrr(Raxmll Rasyn) P(¢) P(B)P(X)’ [11b] 1)]’ 8i — (Dii _y DiSO)/\/m’ L2 — %(DXXDyy + DX{

D,,+ D,D,), 71" = 4D,, + D,y + D,, 72" = Dy +

where the prior® (D), P(¢), P(0), andP(x) are takento 4D,, + D,, 73' = D,, + D,, + 4D,, 7,* = 6(D +

be independent and uniform inside the regihs > 0, 0°< VD2, — L?), 7' = 6(Diy — VD% — L?), 7' = 6Dy, +
¢ = 360° 0°= # = 180°, and 0°< y = 360°, and equal to 7., andx, y, andz are the direction cosines of the bond vector
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TABLE 1 each were generated: the first was distributed according
Internal Motional Parameters and Orientations P aial(Disor Raxan ¢, 0, x|R) calculated using Egs. [3] and [10b]
Used to Generate Synthetic Data (the SBF approximation), the second was distributed accordir

t0 Paia(Disor Raxa @, 0, x|R) calculated using Egs. [4] and
[10b] (the axially symmetric BLW approximation), and the
third was distributed according ®,s,{Disor Raxiaty Rasym ¢ 6,

Te Rex 0 ¢ x|R) using Egs. [4] and [10c] (the fully asymmetric BLW
Residue S (ps) (s at400 MHz)  (degrees) (degrees) approximation). Approximately 1 min of CPU time was re-
quired per residue for thB(S?, 7., Re, ThaplRi) Monte Carlo

Orientation in
molecular frame

1 0.90 10.0 0 160 30 S

5 088 200 0 100 140 samples,_ and each_tensor parameter estlm.atlon Monte Ca
3 086 1000 1.92 44 12 run required approximately 10 min of CPU time. All calcula-
4 0.89  250.0 0 62 280 tions were performed on a Silicon Graphics R10000 compute
5 0.90 30.0 0 66 240 running at 194 MHz.

6 0.80 5.0 1.28 100 279

7 0.94  300.0 0 74 170

8 075 7000 1.60 94 140 RESULTS

9 0.87  350.0 0 67 334 o

10 0.85  200.0 2.24 103 173 1. Tensor Parameter Estimation

E 8:2; 123'.8 %’69 f’f 17716 As was discussed in the Introduction, one of the challenge
13 0.88  600.0 0 94 356 in the analysis of NMR relaxation data is the separation of thi
14 0.85 3.0 0 123 133 effects of anisotropy and chemical exchange without resortin
15 091  250.0 0 " 90 to independent experimental methods. For Tensor 2, the syr
i? 8:21 17?% t.gs ﬁg ggg metry axis is oriented até( ¢) = (30°, 10°) in spherical
18 088 300 339 119 154 coordinates with respect to the molecular frame (Table 2)
19 0.87 3.0 0 28 101 Given that symmetry axis orientation and the spherical cool
20 0.89 25.0 1.79 30 224 dinates of the bond vectors for residues 3 and 5 in Table 1,
21 0.88 8.0 0.77 71 224 follows that residue 3 is located at an angle of 14° relative t
gg 8:23 528_‘8 5'75 133? 1?’725 the symmetry axis of Tensor 2, while residue 5 is nearly
24 0.90  150.0 0 125 g7 perpendicular to that axis (87°). Therefore, even if residue
25 0.86 73.0 0 61 126  did not have amR,, contribution, itsR, would be significantly

26 0.90 94.0 0 135 263 larger than that of residue 5, and it could be difficult to
27 0.87 8.0 0 56 298 determine whether the increas® was due to anisotropy,
gg 8:22 4‘3;'_8 i'gg 123; 1152; chemical exchange, or both. The calculations based on sim
30 088 120 0 80 -sg latedR,, R,, and NOE data at two field strengths allow us to

evaluate the utility of the marginal densiti®{r{).,{R;) for
disentangling the effects of anisotropy and chemical exchang

. . Figure 2 shows a projection of the Monte Carlo samples fron
in the PAS 8, 17, 19. The standard expressions B, R,, (S, Tor Res Tff,)ap;J R.) and P(S, 7o, R, Tfﬁ,)ap,JRs) onto the

and NOE as a function af(w) (2, 20 were used to evaluate R.. 70.,) plane, as well as a plot of the marginal densities
the relaxation rates. The form of the Lipari-Szabo formalis (eTXEs) nep !

(5) i (i)
given in Eq. [12] is valid only in the limit that, is at least one mandRo) and P(7p|Rs). Although the estimates o,
order of magnitude faster than any of the rotational correlation
timest, (i = 1, ..., 5) (7). This condition is satisfied by the TABLE 2
parameters used in this study. The uncertaintigsn Eq. [6]
were taken to be 5% of the correspondiRg, R,, or NOE
measurement. For demonstration purposes, we have used a D D,, D.. Die
uniform value of —160 ppm for the magnitude of thEN (s (w8 (ws) (1S Raw’  Ragm
chemical shift anisotropy (CSA) for generating and analyzin

Tensor Parameters Used to Generate Synthetic Data®

the synthetic data useq in this _stu_dy, and it was gssumed t g:; ij:g ﬂ:g ;g:g 1471:3 1:2 1:8
the CSA tensor was oriented with its symmetry axis parallel @nsor 3 0.8 14.0 25.0 16.3 21 07
the N—'H bond vector, even though the case may be more

complicated in real protein2(-23. ® The orientation of the PAS in the molecular frame of Table 1 is given by

A total of 19,500 Monte Carlo samples distributed accordirffj¢ Euler angles = 30%, ¢ = 10°, y = 50°.
to the d it (S? R i) JR ted f h Isotropic portion of the diffusion tensor, defined in text above Eq. [8].
rgsidie znss('jg;(cnt')gg - ea'e;';ﬁpin X;:)irnedg(elge::aof eai;}i:ﬁsga“ Axially symmetric anisotropic portion of the diffusion tensor, defined in
. . [8].

three sets of Monte Carlo samples consisting of 39,876 point$ Asymmetry ratio of the diffusion tensor, defined in Eq. [9].
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samples (Table 3) and one-dimensional marginal densities
the tensor parameters as shown in Figs. 3 and 4. As seen

P, | R) ‘ Table 3, all three estimation methods (SBF, BLW WRf,,, =
‘ // 1, and BLW withR,,, # 1) were successful in deriving the
e correct diffusion tensor axial asymmetry ratio and orientatior
60 o ‘ e from the synthetic 400- and 600-MHR,;, R,, and NOE data
A N ﬂ for both the isotropic Tensor 1 and the axially symmetric

‘ Tensor 2. Unlike the results for Tensors 1 and 2, the SBF ar
BLW(axial) approximations were inaccurate in their estimate:
60 - o - of the anglef for the fully asymmetric Tensor 3. This is not
A unreasonable, since an axially symmetric model is incorrect fc
Residue 3 this data set. On the other hand, the BLW(asym) method do
provide accurate estimates of these parameters for Tensor 3,
well as accurate estimates Bfs,, and .

As indicated in Table 3, the Monte Carlo sample for
BLW(asym) exhibits bimodality, with one mode correspond-
ing to R, > 1 and another withR,,., < 1 (Fig. 5).1t should
be noted that although these two modes are far apaidig, (
Raxar Rasym) SPace, they are in fact contiguous ib,(, D,,,
D,, space, and the bimodality arises from the choice of pa
‘ rametrization used in this analysis. Furthermore, as the diff
0.0 ‘ ‘ : sion tensor becomes more asymmetric, the pararfgigrhas
6.0 8.0 10.0 12.0 14.0 . . . . .
(ns) less physical meaning, since it makes less sense to descri

such a tensor as prolate or oblate. However, this in no wa
'_FIG. 2. _ Montze Carlo samples generaFed from the Iocal_posterior pmehvaIidates the use of th@ﬁso, Riuial Rasy") parametrization as
bility density P(S%, Te, Rex ThandRi) for residues 3 and 5 projected onto the . .
(Rex T92p0 plane, along with the marginal posterior densifs{,,/R;) and a computational device. Re_cent work by BlajCkle@g,al' (24) .
P(r%,,Rs). The minimal overlap between the latter two curves indicates thB@S suggested that the fitting of a fully anisotropic diffusior
the differences in the relaxation data for residues 3 and 5 are due at least in faRsor by an axially symmetric one can result in the sum o

to anisotropy effects, irrespective of any differences in internal motions. squared residual surfaces with multiple minima (or equiva
lently, multimodal likelihood functions). This bimodality
andR., are strongly correlated, and lack of knowledge of tharises from the (mis)fitting of an axially symmetric tensor to a
magnitude ofR., substantially increases the width of thdully anisotropic tensor using either the major or minor axis of
P(7\).,JR:) distributions, nonetheless there is minimal overlaghe latter as the symmetry axis of the former, and is unrelate
between the marginal densities for the apparent tumbling céo-the R, Rasym) bimodality described above. We do, how
relation timeP(7$,,/R:) and P({,.dRs) for these two resi ever, also observe a second mode locatdlat= 17 us * and
dues. This indicates that there is a significant difference in th&l,,, = 0.6 when fitting Tensor 3 data with the SBF and
4.0 Values due to orientational effects associated with diffBLW (axial) approximations. The maximum posterior proba-
sional anisotropy and that the increased transverse relaxatidlities of those modes are a factor of 3000 smaller than th
rate for residue 5 cannot be explainedRy effects alone. For maximum posterior probability of the modes listed in Table 3,
example, it is apparent from Fig. 2 that all valuesd,,, and we conclude that the probability mass contained in thos
having appreciable posterior probability are smaller than tiheodes is negligible for these synthetic data.
value of T(mE?app even whenR,, is constrained to be zero. We It is interesting to note that for these synthetic data sets th
conclude that by using the marginal densities for the locakpectation values db;, are overestimated (compared to the
tumbling parametet),,, it is possible to separate the effectestimated uncertainty iB,) for both Tensor 1 and Tensor 2
of chemical exchange and anisotropy. irrespective of the analysis method used. This arises from tt
The marginalt{),,, densities can be used to estimate thfact that the probability densitieR(S’, 7., Rex, TwadRi) CaN
diffusion tensor parameters and assess the statistical sigrifive substantial skewness, especially with respect(g,
cance of different models for the overall tumbling of th&his is the case for many of the 30 residues in this syntheti
protein. This is done by usinB(7%.{R;) together with the data set, except for residues having very small@ ps) or
SBF or BLW approximations (Egs. [3] and [4]) to generatiarge (>200 ps)7. values. This skewness results in marginal
Monte Carlo samples from the posterior probabilities of theensities that are biased toward smaller values(Qf, even
diffusion tensor paramete¥(D|R), PaalDisor Raiar ¢, 0, though the maximum oP(S?, 7., R, ThadRi) OCCUrS at the
xIR), and P.o(D sy Ravar Raym @, 0, x|R) as described correct value ofvﬁ’,app Thus, proteins which have a large
above. The results of these calculations are summarized in thanber of residues with, values on the order of tens of
form of means and standard deviations of the Monte Canbicoseconds (such as the simulated 30-residue protein us

Residue 5

20 r

0
va app
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TABLE 3
Results of Tensor Parameter Estimates for Synthetic Data

Tensor 1 Tensor 2 Tensor 3
BLW BLW BLW BLW BLW BLW
SBF (axial) (asym) SBF (axial) (asym) SBF (axial) (asym)
Do (us™) 145+ 0.2 145+ 0.1 145+ 0.2 18.5+ 0.2 18.0+ 0.2 Mode 1: 172+ 0.3 16.4+ 0.2 Mode 1:
(14.0y (27.7) 18.1+ 0.2 (16.3) 16.4+ 0.2
Mode 2: Mode 2:
18.4+ 0.3 165+ 0.2
Raxial 0.99+ 0.08 0.99+ 0.08 1.0+ 0.1 1.9+ 0.2 1.7+0.2 Mode 1: 23+ 0.2 21+0.2 Mode 1:
(1.0) (1.8) 1.7+0.2 (2.1) 20+ 0.2
Mode 2: Mode 2:
0.63* 0.07 0.45+ 0.05
Rasym n/a n/a >0.93 n/a n/a Mode 1: n/a n/a Mode 1:
(2.0) (2.0) >0.80 (0.7) 0.70 + 0.07
Mode 2: Mode 2:
0.77 = 0.06 0.65* 0.05
¢ (degrees) Uniform Uniform Uniform *7 10 =8 Mode 1: 9+5 9 x4 Mode 1:
(10.0) 9+8 (10.0) 10+5
Mode 2: Mode 2:
5+ 14 10+ 6
0 (degrees) Uniform Uniform Uniform 3k 4 31 =4 Mode 1: 35+ 3 36 =3 Mode 1:
(30.0) 315 (30.0) 32+3
Mode 2: Mode 2:
30+ 8 30+ 4
x (degrees) n/a n/a uniform n/a n/a Uniform n/a n/a Mode 1:
(50.0) 51+ 10
Mode 2:
50+ 9

® Parameter estimates and errors correspond to the means and standard deviations of the corresponding marginal posterior probability densities.

®Values in parentheses indicate the values used to generate the synthetic data (reproduced from Table 2 for ease of reference).

¢ Lower bounds orR,,n» correspond to the value of the 5th percentile of the marginal posterigg@f i.e., there is less than a 5% chance (integrated ovel
all the other parameters) thRt., is smaller than the indicated value.

here) can give biased estimates @f,, while proteins with “marginal likelihood of the data,” which is simply the normal-
relatively few residues withr.'s in that range will have more ization factorP(R) in Eqg. [5] or [10]. We can compare the
accurate estimates @f,. Such bias would also be propagate@vidence for two competing models by taking the ratio of the
into the local dynamical parameters, especi&dly. While the marginal likelihoods of the data for each model. This ratio is
estimate oD, does differ by more than 5 standard deviationgnown as the Bayes fact®; ,, and gives the odds in favor of
for Tensor 1, the relative error is only 4%, and will result in anodel 1 in the numerator over model 2 in the denominato
systematic overestimation &%, of at most 0.3 5" at 400 MHz  (assuming that the models are equally likalpriori) (18, 26.
(based on the linear correlation betwépandry,.,,shown in  Furthermore, it follows from its definition that the Bayes factor
Fig. 1). It should be noted that the correct valueDgf, is also is symmetric with respect to the hypotheses; i.e., the odds |
recovered as the uncertainties approach zero for, values in - favor of model 2 B, ,) is simply the reciprocal of the odds in
any regime. favor of model 1.

In the context of diffusion tensor estimation, there are twc
hypothesis tests of interest: (1) how much evidence is there f

Estimates of the marginal densitieP(R,.|/R) and isotropic tumbling and against axially symmetric anisotropic
P(R.snR) (Figs. 3 and 4) are also extremely useful in that theiygmbling? and (2) how much evidence is there for fully aniso
provide a straightforward method for the determination of tHgopic tumbling and against axially symmetric tumbling? These
statistical significance oR.. and R.,.» From a classical two questions can be answered using the Bayes faBlQIs.
statistical perspective, the statistical significance of a model Piso(R)/Paa(R) and Bagmaxa = Pasyr(R)/Paal(R), Where
parameter is often determined via tife statistic, which is the marginal likelihoods of the data are defined in Eq. [10]. Ir
related to the ratio of likelihoods for the two hypotheses at tlgeneral, computing a Bayes factor is far from trivial, as it
best fit values of the parameteg). In the Bayesian perspec-requires knowledge of the normalization constants which or
tive, the evidence in favor of any given model is given by thdinarily can be obtained only from multidimensional integrals

2. Assessment of Statistical Significance
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which are analytically intractable and difficult to evaluate 300
numerically 6). However, for the case of nested one-dimen- ‘
sional hypotheses (such as those correspondirig)ig,. and
B.symaxa@b0OVe), the Bayes factor can be determined from the

marginal prior and posterior densities of the corresponding ”00 1
parameter. In particular2f), if the prior probabilities satisfy '
the conditions £
PaxiaI(Diso‘ Raial = 1) = Piso(Diso) [138.] 10.0 - “5" _
and , l T
Pasyn(Disoa Raxial’ Rasym: 1) = PaxiaI(Disoa Raxial)y [13b] 0'00.5 01.6 0777 — 7/0.‘8 /05; 1.0

R

asym

then the Bayes factors for isotropic vs axially symmetric andF!G: 4. Plots of the marginal posterior probability densitRg(RaqrlR)

. . . . . . for Tensor 1 (solid line), Tensor 2 (dashed line), and Tensor 3 (dotted line
axially symmetric vs fully anisotropic tumbling are given byusing the BLW(asym) approximation. The parameRt,, represents the

degree of deviation from axially symmetric tumbling, and the arrow represent

the value ofR,,, used to generate the synthetic data for Tensor 3.
I:)axial( Raxial = 1’ R) ’

B|so,a><|al I:)axial( Raxial = 1) , [14a]
and
a 50 : —— =
P Baxial,asym: P;Sy"(:;;ym :1:|LI)Q) 1 [14b]
//’ \ asy asym
4.0 / . 7
/ N respectively, Wher® ,,.(Raa = 1|R) andP .qn{Rasym = 1|R)
20 | / \ are the marginal posteriors of Figs. 3 and 4, 8¢.(Ruia =
, yd l 1) and P.y{R.sym = 1) are the marginal priors evaluated at
oo et A Rai = 1 andR.,» = 1.> The conditions of Eq. [13] are
07 08 09 1.0 11 1.2 13 satisfied by the priors used here, since Eq. [13a] follow:
b 30 ‘ ‘ immediately from Eq. [11a], and Eq. [13b] follows from the
: fact that any value oR,,, is consistent wittD,, = D,, = D,,
= 20 P - and the conditions of Egs. [8] and [9] wheR,,, = 1,
_é /"/ // \\\ \\\ i.e., Pasym(Disoa Raxiall Rasym = 1) o PaxiaI(Disou Raxial) (See
< ool s l RN | Appendix A).
// RN We can now make use of Eq. [144a] to evaluate the evidenc
e ‘ e ] for or against isotropic tumbling based on the marginal poste
%2 14 s 18 20 22 24 riors of Fig. 3 and the marginal prid® a(Rada) = Po(Raxa)-
C 30 L From Egs. [Al] and [A2] it follows that given a physically
! reasonable prior range< R.i = 4, Paia(Raxa = 1) = 3, and
20 Bisomia = OPaia(Raa = 1|R). For Tensor 1 (Fig. 3a),
) e Paia(Raia = 1|R) =~ 5 for both the SBF and BLW approxi
ol p e \\\ mations, which giveB, .« =~ 30. This means that the odds in
{ T l L favor of isotropic tumbling are 30:1, and constitutes strong
L - T~ evidence against the presence of any anisotropy. For Tensor:
00618 20 22 24 26 28 30 and 3,P,..(Ruw = 1|/R) is vanishingly small, providing very
Rasa decisive evidence against isotropic and for axially symmetri

FIG. 3. Plots of the marginal posterior probability densitRs.(R.oJr)  ©F fully @nisotropic tumbling. It should be noted that even if
for Tensor 1 (a), Tensor 2 (b), and Tensor 3 (c), whegg, represents the there is not decisive evidence in favor of a given model, on
degree of deviation from isotropic tumbling. The solid and dashed lines
represent the estimates of that density using the SBF and BLW(axial) approx? In order to simplify the theoretical presentation, we perform the hypothesi:
imations. The arrows represent the valuesRyf, used to generate the testing based on the marginal posteriors and priors obtained after integrati
synthetic data. over the angular parametefis ¢, and .
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a 10 | - 3. Comparison with a “Standard” Approach for Estimation

of Tensor Parameters

A. Synthetic data. It is informative to compare the results
obtained above to those obtained using the approach often us
in the current literature, namely the elimination of residue:s
with significantr, and/orR,, values, followed by the estima
tion of apparent, values fromR,/R, and fitting of those to a
diffusion tensor 16, 17). In order to estimate overall tumbling
parameters fronR,/R,, it is first necessary to identify and
eliminate residues which have significant contributions fromn
1. # 0 and/orR,, # 0. Residues withr, values in the neigh
borhood ofr, = 0.1 7, have NOE values which are signifi
cantly reduced from those with, = 0. Therefore, such resi
dues can be identified and eliminated by discarding all residue
with NOE values below some cutoff (e.g., NOE 0.65). It
should be noted that due to the dependence of the NOE,on
this criterion will not detect residues with values greater than
~0.25 1, even though such residues will still have signifi
cantly perturbedR,/R, values #). After removal of residues
with nonzeror, contributions, one can use Eq. [1] to remove
residues with nonzer®,, contributions. This criterion was
motivated by the observation that in the presence of rotation:

05 = \ - anisotropy, bond vectors aligned along the long axis of th
00 05 10 R1'5 20 25 %0 diffusion tensor will experience an increase Ry which is
correlated with a decrease R, (7), while R., only has an

FIG. 5. Monte Carlo samples generated from the posterior probabili¥ffact onR,. Therefore, eliminating residues which have larger

densityP .o, Disoy Raxiay Rasym @, 0, x|R) for Tensor 2 (a) and Tensor 3 (b)
projected onto theRaa, Rasyn) Plane. The dashed lines indicate the regions oﬁhan average, values and not smaller than avera_glevalues

the (Rava» Rasym) Plane consistent with the definitions of those parameters, aN_l'ﬂi” tend to eliminate residues with significaR, contribu
correspond to the curves for whidh,/D,, = D,,/D,, and the distinction tlons.

between “prolate-like” and “oblate-like” is ill defined. The right-hand region As js well known, in the limit ofr, = 0 andR,, = 0, the ratio
corresponds to “prolate-like',./D,, > D,,/D,y), while the left-hand region R,/R; is independent 082, and can be used to estimate the
corresponds to “oblate-like"d,./D,, < D,,/D,,) ellipsoids. . . )
apparent overall tumbling correlation time),,, or apparent
rotational diffusion coefficientD), = (67%),,) * for each

. . . residuei. These apparent diffusion coefficients can then b
can simply perform the analysis using the larger of the nest ated to the diffusion tensor parameters and bond vect

models. The re;ulting parameter estimates will then r?press%ntations via the BLW approximation,
an “average” (in some sense) over the models which are
supported by the data. Qi Qi Qua\ /X

We can similarly determine the evidence for or against (Xiyizi)(Q12 Q. Qza) (yi) =Dy, [15]
axially symmetric vs fully anisotropic tumbling from Qi3 Qs Q) \zZ
Eqg. [14Db]. In this case, we must obtain the marginal prior
P.synr(Rasym), Which is derived in Appendix A. Substitutingwhere (x;, yi, z) are the direction cosines of ttiéh bond
the prior range ovemR,. into Eq. [A3], we find that Vectorinthe molecular frame ai@; are the same as in Eq. [4]
P.syr(Rasym = 1) =~ 2.4. From the marginal posterior densi except that they are in threolecularframe and not the PAS of
ties of Fig. 4 we see tha®,..(R.ym = 1|R) ~ 28.5, 7.6, the tensor 16).'Equation [.15] is linear in the unknowr@;,
and 0.02 for Tensors 1, 2 and 3, respectively. This givé@d the set of linear equations corresponding to Eq. [15] for a

0.9 ’»

|
0.8 -

Rasym

0.7 -

06 -

0.9

0.8

Rasym

0.7 -

0.6 -

Bayes factorsBauasm ~ 12, 3, and 0.008, respectively. (i = 1,...,N) can be rewritten in matrix form as
Although there is a greater than 1:1 odds in favor of axially
symmetric tumbling for Tensors 1 and 2, according to the /. 5 ) Qu "
. . o X1 2Xy1 Y1 2XZy 2yi1Zy Zi\| Qg D app
conventions of the Bayesian statistics literatu?é) (Bayes 2 2 2 @
. . . X5 2X¥2 Y2 2X%Zp 2YoZ, Z5|| Qu| | D
factors of this magnitude do not constitute very strong | - : . : : Qi T S,
evidence. On the other hand, there is very strong evidence i " : 2 : : P = :(N)
' . ] . . XN 2XYn YN 2XnZn 2YnZn Zn/ | Qa3 D
favor of fully anisotropic tumbling for Tensor 3 (with Qus

Basym,axial = ;x::-al,asym ~ 125) [16]
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which can be solved by standard linear algebraic methods.Hqg. [1] failed to eliminate four residues with nonzeRy,

particular, if we assume that the uncertaintp’ﬁgpis normally contributions (residues 6, 16, 19, and 21), and the resultin
distributed with standard deviatios; (as described below), deviations in theR,/R; values for those residues were prepa
then the maximum likelihood solution for ti@;’s is given by gated into a fictional anisotropy. Although a visual inspectior

weighted least-squares fit of theD{), values as a function of orientation would reveal that
residues 6, 16, 19, and 21 are probably outliers above &
Q. otherwise flat “baseline,” this cannot be detectedFbtesting
Qi alone. A more sophisticated criterion that takes advantage
Qaa|  para IR Lo A1 the quadratic field dependenceR, such as that proposed by
Q,,| ~ [Adiagai "o, - oy Al Phanet al. (14) could be used instead of Eq. [1] to detect and
Qs eliminate residues witR,, contributions. The marginal poste
Qss rior densities ofrﬁi?appdo not suffer from this problem, however,

and estimation of the tensor parameters finds very stron

(1>
B?zp) evidence (odds of-300:1) in favor of isotropic vs fully aniso-
X ATdiago1%0,% - oy f‘pp , [17] tropic tumbling without the need to exclude any data.
DM We repeated this calculation for the fully anisotropic Tenso
ap 3 data, and found that the NOE and Eqg. [1] criteria eliminate

) ) o ) ~ the same 17 residues as for Tensor 1. In this case, the best
whereA is the matrix of direction cosines on the left-hand sidg,|ly anisotropic tensor was found to B, = 9.0 us ™%, D,, =
of Eq. [16], and diag( ) is a diagonal matrix having the 14 1 4s™* andD,, = 23.1 us™, corresponding to reparam
indicated elements along the diagonal. etrized values 0Dy, = 15.4 uS %, Ry = 2.0, andRugym =
We performed the calculation described above using the dgtg4. The isotropic fit gavb ., = 15.6s %, and theF statistic
for Tensor 1 (corresponding to isotropic tumbling). Applicaor the improvement in the fit was found to be 34.7, corre-
tion of the NOE> 0.65 criterion resulted in the elimination Ofsponding to a vanishingly smafl value. In contrast to the
residues 3, 4, 7-10, 12, 13, 15, 22, 24-26, 28, and 29. Theits for Tensor 1, the results are much closer to the corre
criterion of Eq. [1] further eliminated residues 11 and 18. Thg,|es (Table 2). This striking difference is due to the fact tha
uncertainty inR./R, for the remaining 13 residues was-asihe yariation inD (), as a function of orientation due to anisot
sumed to be normal, with a variance estimated by propagatiof, for Tensor 3 is comparable in magnitude to the perturbz

of errors @8) using the same 5% relative errors used in thg, ¢ inD ), due to the smalR,, contributions in residues 6, 16,
Bayesian analysis above. The value and uncertainty in €8 anq 21, and therefore they contribute much less to tt
D {),were estimated using a classical Monte Carlo approach Berall fit

calculatingD {), by numerical root finding usinilathematica ) o

(29) for 2000 pseudorandom numbers drawn from the corre—.B- Experimental data. To. demonstrate the applicability of.
sponding normaR,/R, distribution, and using the variance ofthis method to real experimental data and to compare it
the resultingd &), values as the variance of the assumed norm@grformance to the “standard” method, we performed a tens:

uncertainty inD{), The best fit diffusion tensor elements wer&Stimation calculation for relaxation data obtained on th

then determined using Eg. [17]. dimeric C&" binding protein S10084g) (91 residues/mono

After diagonalization of the best f® matrix, the solution Mer). S100BgR) is an EF-hand type Cabinding protein that
for fitting the data generated using an isotropic system with"@s been implicated in the neuropathologies of Down’s syr
fully anisotropic tumbling model was found to I, = 11.5 drome and Alzheimer’s diseasgQ], and its structure has been
pus', Dy, = 12.5us ™", andD,, = 16.5us ™", corresponding determined by NMR methodsS3{, 32. Estimates of the mar-
to reparametrized values Bf., = 13.5us %, R = 1.38, and  ginal 7{).,, densities for the 65 residues for whigh, R,, and
R.em = 0.92. To assess the statistical significance of this 'NOE data were available at both 400 and 600 MHz wert
over isotropic tumbling, the fit was repeated with the corgenerated using Egs. [5]-[7] as described above. An estima
straintsQ; = 0 fori # j andQ,, = Q,, = Qas. The isotropic of the diffusion tensor parameters for both axially symmetric
fit also gaveD,, = 13.5 us ', and theF statistic for the and fully anisotropic tumbling was then made from the mar-
improvement in the fit using the anisotropic mod&F)y(was ginal 75, densities using the BLW approximation. Informa
found to be 5.74, corresponding to a very signifiganalue of tion regarding the dimeric nature of S10@®) was included
0.002. Therefore, straightforward application of methods cun the calculation by using orientations for 130 bond vectors
rently used in the literature for estimation of rotational diffucorresponding to the 65 residues in each of the two monom
sion anisotropy to small data sets can potentially produsaits. IdenticalP(r{).,/R:) densities were assigned to each of
misleading results, such as the one described here, in whibe symmetry-related residues. The molecular frame was ch
synthetic data generated using an isotropic tumbling modsn to coincide with the inertia tensor of the protein structur
result in a statistically significant estimated anisotropy a@fs determined by NMR methods, with the din@arsymmetry
~1.4:1. The origin of this erroneous result is that application afis along thes axis of the molecular frame&)(= 90°, ¢ = 0°).
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Monte Carlo samples generated from the posterior probability deRgify(D s, Raxar @, 8|R) using the BLW(axial) approximation based on
experimental relaxation data obtained on the protein S18BB(the x dimension has been dropped sifRg, > 1 for all points andy represents rotations about
the symmetry axis). Each panel corresponds to a projection of the full set of Monte Carlo samples onto a plane corresponding to each pair of param

As a test, the calculation was repeated without the symmetrgnishingly small, which implies overwhelming evidence
information, and the results were consistent with those pragainst isotropic tumbling. The expectation values and star
sented below, albeit with much larger uncertainties for theard deviations for the axially symmetric tensor paramete
tensor parameters. Less th& h of CPUtime on an SGI estimation Monte Carlo arB, = 22.3 + 0.1 uS ™", Ray =
R10000 processor was required for these calculations.
A summary of the resulting tensor fit is shown in Figs. 6 anghat for a symmetric dimer the symmetry axis of the diffusion
7. The lack of Monte Carlo samples B, = 1 in Fig. 6
indicates that the marginal posterior denstR.,.. = 1|R) is

40

30 -

FIG. 7.

094 0.96 0.98 1
R

asym

Plot of the marginal posterior probability densmyg,Ras,nR)

1.17+ 0.02,6 = 151°*+ 5°, and¢$ = 90° + 8°. It is expected

tensor should be either coincident with or perpendicular to th
C, axis for the dimer. It is clear, based on this analysis, that th
latter is the case for S100Bg). Based on the marginal pos-
terior densityP(R.s,+R) from the fully anisotropic fit (Fig. 7),
we find thatP(R.sm = 1|R) ~ 22, implying an odds of 9:1
against fully anisotropic tumbling and for axially symmetric
tumbling (based on the priors used under Section 2 of Result
above).

For comparison, the data were also subjected to a “standar
analysis of global diffusion. First, those residues for which
NOE < 0.65 at 600 MHz (two C-terminal residues) or was not
known (8 weak or absent and 8 due to overlap at 600 MHz
were eliminated from consideration, due to possikleontri
butions. After application of the criterion of Eq. [1], 7 of those
remaining residues were eliminated due to possible exchan
contributions tdrl, relaxation. Local effective correlation times
of the remaining 66 residues were calculated on the basis of tl
600-MHz T,/T, ratios using the program R2R1_TM (A. G.
Palmer, Columbia University). Using these correlation times
initial estimates of global diffusion parameters were estimate
by the approach of Bechweileret al. (16) and Leeet al. (17),

generated using the BLW(asym) approximation based on experimental rel#aing the program QUADRIC_DIFFUSION, version 1.1
ation data obtained on the protein S108BJ.

(A. G. Palmer, Columbia University). Isotropic, axially sym-
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metric, and fully anisotropic ellipsoidal diffusion tensor paranstrained to 90° to maintain the condition©@f symmetry about
eters were estimated and then subjected to statigtitesting. the x axis? A total of approximately 60 h of CPU time on an
Two axial diffusion tensors were found to fit the data wittBGI R10000 processor was required for these calculation
statistically significant improvement over the isotropic fit. OnBetails of the complete analysis, as well as a comparison of tt
was oblate D, = 21.3* 0.1 us™", Ry = 0.89+ 0.01;p < results for internal motion using MODELFREE to those using
10°% compared to isotropic, and the other prola®2,( = the Bayesian marginal density approach, will be publishe
215+ 0.1 us !, Ryw = 1.16 = 0.01;p < 10 ). Although elsewhere. The tensor parameter estimates are obviously
no classical statistical test is available to test the two tensamery good agreement. Only the estimateDqf differ signif-
against each other, the prolate tensor displaygflawer than icantly compared to the estimated uncertainties, with th
that of the oblate. Each was subjected toFatest, comparing Bayesian estimate being larger i us™*, and are consistent
an axial tensor to the best fit fully anisotropic tensbr,{ = with possible bias due to skewness of the posterior probabilit
21.5* 0.1 us ™!, Ry = 1.16 = 0.01,R,,,» = 0.98 = 0.01). density, as described above.

The anisotropic tensor did not show improvement when com-

pared to the prolate tensop (=~ 0.8), whereas significant DISCUSSION

improvement was shown when compared to the oblate tensor

(p < 10°°). At 400 MHz, 7 additional residues were lost to We have shown that the use of marginal probability densitie
weak signal or overlap, and the analysis was repeated for fRE Tmapbased only omR;, R,, and NOE data collected at two
remaining 59 residues. Again, both oblate and prolate tensg@sily accessible spectrometer field strengths (400 and 6
were found to fit the data better than the best isotropic modéHz) can be used to reliably detect, quantify, and assess tt

with a high degree of statistical significancp & 10 ° and Statistical significance of rotational diffusion anisotropy in
p < 10 ', respectively). The oblate resulb(, = 21.1+ 0.1 Mmacromolecules without making assumptions about the natu
uS Y, Ru = 0.89+ 0.01) allowed significant improvement inand distributions of internal motions. In particular, the field
moving to a fully anisotropic tensob(,, = 21.3+ 0.1 us*, strength dependence of the chemical exchange contribution
Raga = 1.16 = 0.01,R.qym= 0.98+ 0.01,p < 10 **), whereas R. can be used to separate the effects of chemical exchan

the prolate result,, = 21.3+ 0.1 us %, Ry = 1.16+ 0.01) and anisotropy without the need for additional experimenta

did not (p =~ 0.7). Since for both the 400- and 600-MHz dat#lata from rotating frame or cross-correlated relaxation expe
the prolate axially symmetric tensor was nearly identical to th@ents. However, it should be noted that the formalism pre
best fit fully anisotropic tensor (WitR.. = 1.16 andRug,m ~ sented here can easily accommodate such data with no char
1), and the best fit fully anisotropic tensor in each case repmghatsoever to the overall theory, since such data could t
sented a significant improvement over the oblate axially syrficorporated at the level of the likelihood and prior densities ir
metric tensor, only the prolate axially symmetric tensor wdsd. [5]. For example, independent knowledgeRaf obtained
considered further. from rotating frame relaxation dispersion experiments could b
An initial estimate of the diffusion tensor parameters baséed to reduce the width of the marginal densities{af, due
on the above analysis was used as a starting point fortGathe correlation among those two parameters (Fig. 2).
complete Lipari-Szabo analysis of internal motional parame-In general, both the SBF and BLW approximations perforn
ters. Data collected at both fields were used simultaneoushgll, with the BLW providing slightly more accurate estimates
and the motional paramete®, 7., and R, were optimized. of D, as well as allowing for the estimation of fully anisotro
An iterative process was performed in which model selectidghC tumbling tensor parameters. Although the authors indicat
by statistical F testing was alternated with optimization ofthat the BLW approximation is valid only for small anisotro-
global diffusion parameters, following in large part the methoies (L6), our results indicate that it can still give excellent
of Mandelet al. (33), and using the software MODELFREEestimates of the diffusion tensor parameters even for anisotr
version 4.0.1 (A. G. Palmer, Columbia University). For diffuies on the order of 2:1 (Table 3). Therefore, unless th
sion optimization, only those residues were considered wha®¢Pected anisotropy is quite large (substantially greater the
data were found to fit well to model 1 (on§? is optimized), 2:1),the BLW approximation seems to be the method of choic
2 (S 1), 3 (S R, of 4 (S, ., R.). Goodness of fit was for tensor parameter estimation.
judged by ay? test at thep = 0.1 significance level, and @h Given the very different data analysis strategies of the
test atp = 0.2 significance was used to discern genuirdayesian and “standard” approaches, it is interesting and r
improvements in the fit for more complex models. For ead$suring that the resulting tensor parameter estimates genere
residue, the simplest model to pass these criteria was ustgree very well (except for the case of the Tensor 1 synthet
Several rounds of calculations alternating model selection a#ata). The amount of CPU time required for the two calcula
diffusion tensor optimization converged (with little variation)

on a diffusion tensor with parametdhss =214+ 0.1 Ms—l * A comparison was made of two runs of MODELFREE in which the only
R = 116 + 003. 0 = 141 + 4° © andqé _ 9'00 Fc;r difference was that one used coordinates from a single subunit while holdin
axial . — . 1 - —_ ] - .

) it . ¢ at 90°, and the other used both subunits and allogvéd float. Though the
compgtatlonal 9ﬁ|0|ency, the coordinates of qnly one subUmitter took considerably more CPU time, the tensor parameter estimates we
were included in the MODELFREE runs, whilg was con- indistinguishable.
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tions, however, is significantly different, especially when usingeliable, and efficient tool for the simultaneous analysis o
MODELFREE to estimate uncertainties in the diffusion tensdhese data. Software implementing this approach will be avai
parameters. Although reasonable search parameters were @lde at http://www-nmr.cabm.rutgers.edu.

sen for the MODELFREE analysis of the experimental data, it

is possible that the calculations could have been performed in APPENDIX A

less time. The Bayesian approach avoids the guesswork in-

volved in choosing the parameter space sampling, and in thisy normalizable (“proper”) priorP u(Rag) can be con
case required less total CPU time by approximately a factor gfycted in several ways. The simplest is to define a rang
30. This is due to the fact that the margii{r.,{R)) den (Rmm R yer which P,.(Ru.) is €qual to a nonzero
sities summarize the tumbling correlation time informatiopgnstant, and se?,.(Ra.w) = O outside of that range. How
more efficiently, and due to the avoidance of computationallyer, such a prior suffers from an asymmetry in its treatment ¢
intensive nonlinear optimizatiord). It should be noted, how- prolate- and oblate-like ellipsoids. Suppose that one wished

ever, that this comparison is appropriate only if the desired epghresent the highly uninformative prior knowledge that the
product is the tensor parameter estimate. This is because f{}sor is prolate with an undefined upper bound (i.e<1

MODELFREE calculation also provides final estimates of th@H/DL < ). Such a prior oveR,,, would obviously be

internal motional parameters, whereas in the Bayesian #proper, since it is equal to a constant over an unbounde

proach, the global tensor parameter information would St”égion. On the other hand, the analogous prior for oblat

have to be propagated back into the local parameter estimatgssors would be equal to a constant overhibandedregion

(4). We estimate that even in that case, the Bayesian approgch R.. = 1, leading to a proper prior ov@.,.. In order to

is at least a factor of 6 faster. . treat prolate and oblate tensors on more equal terms, we defi
The ability of the Bayesian approach to disentangle thge priorP,.(R...) Such thatD /D . is uniformly distributed

effects of chemical exchange and anisotropy with a minimgy; prolate tensors, whil® ,/D; is uniformly distributed for

amount of experimental data suggests that if more data, pgfiate tensors (foR, = 1). After accounting for the change
ticularly from transverse and longitudinal cross-correlated rgs yariableR,,, = (D./D;)* (36), this leads to

laxation (L2), were collected and analyzed in this manner, one
might be able to address questions about other contributions to

; . . (min)
N relaxation. One such question which has attracted some 0, Raxia < Radal = 1

. . . L X . -2 i
interest recently involves the possible variations in the magni- P, i Ruia) = KRada Ria = RaxiaI(S ],; [A1]

. . max) s
tude and orientation of thé&’N CSA tensor 21-23. Such el e K, 1> Ry = Raa
variations are of particular interest since they can affect the 0, Raxia > Ry
performance of NMR experiments based on the TROSY
method 84, 39. where the normalization constakis given by

CONCLUSIONS R
Kk = - axial [AZ]
In conclusion, our formalism not only provides accurate 1+ REM(REN - 2)

estimates of the “best fit” tensor parameter values, but the
posterior probability density function provides a full charagy, g « R™ < 1 andR™® > 1. For all calculations in this

axial axial

terization of the uncertainty in the tensor parameters, includiﬁgper, we will choos®™” = 1 and R = 4. It should be
any statistif:al cor_relations3 skewness, and multimodality.. F_LH’Oted that the choice of prior range typically has minimal effec
thermore, it provides a simple way to assess the statistigh] the parameter estimation problem, since the prior is nol
significance of different models for the diffusion tensor ifna|ly much flatter than the likelihood function. On the other
terms of Bayes factors, all with very reasonable amounts inq the prior can have a more substantial effect on the Bay
computer time. We have validated the accuracy and utility efctors (Eq. [14]), as discussed under Results.

our methodology with synthetic data, and have demonstratedy, the fully anisotropic case, the prior oVBL and Raym

an application to real experimental data. Although our apznnot be factored into independe®i,. and R, contribu
proach requires more than the three standard relaxation Mggns since not all POINts in theRG,w, Rasy) Plane are feasible
surements per residue, access to multiple spectrometers; I§riori. It can be shown that the definitions B, and Ruym
becoming more common, and the collection of relaxation dq;ﬁmy a joint Prior Py Rada Rasyn) P e Raxa) F(Rasian

at multiple field strengths is becoming more routine. We b@asyn)’ where the functiorf(Ra, Rasym) is €qual to 1 in the
lieve that the use of multiple field strengths and relaxatiofl(q}gionS bounded by the curvé,,, = 1 and

types (such as cross-correlated relaxation) will be critical for
reliably disentangling the effects of anisotropy, chemical ex- )
change, and variations in chemical shift anisotropy. The sta- 2Rasym

1 Db N Raxia
tistical approach described in this paper provides a simple, (1 + Rasym '
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for Rua = 1 (i.e., the region wher®,, = 1, D,/D,, < ginal densityP(Tﬁ?apJRi) was represented in the form of a
D,,/Dy, andD,, = D,, = D,,), andR,yn = 1 andR,,{1 + Chebycheff polynomial expansio#4) of order 40 in all sub-
Rasym) = Raxa fOr Raia > 1 (i.€., the region wherR,, = 1, sequent calculations.

D./D,, > D,,/D,, andD,, = D,, = D,;), and O elsewhere.
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